Cho a, b , c ko âm và thỏa mãn \(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\) . Tìm GTLN và GTNT của P = 2a + 3b - 4c
Bạn nào zúp vs ạ !!!
Cho a,b,c là các số thực thỏa mãn: \(\hept{\begin{cases}a,b>0\\a+2b-4c+2=0\\2a-b+7c-11=0\end{cases}}\). Tìm GTLN và GTNN của P=6a+7b+2006c
Tìm a, b, c thỏa mãn:
\(\hept{\begin{cases}a^4-2b=\frac{-1}{2}\\b^4-2c=\frac{-1}{2}\\c^4-2a=\frac{-1}{2}\end{cases}}\)
Cho a;b;c là các số không âm thỏa mãn:2a+b=6-3c;3a+4b=3c+4.Tìm min E=2a+3b-4c
Cho a,b,c,d nguyên không âm thỏa mãn: \(\hept{\begin{cases}a^2+2b^2+3c^2+4d^2=36\\2a^2+b^2-2d^2=6\end{cases}}\)Timf Min P=\(a^2+b^2+c^2+d^2\)
Tìm tất cả các bộ số nguyên (a,b,c,d) thỏa mãn: \(\hept{\begin{cases}a^3+3b=c^3\\b^3+3a=d^3\end{cases}}\)
Ai giải giúp e vs ạ
Cho a,b,c ko âm thỏa mãn:
\(\hept{\begin{cases}a+3c=8\\a+2b=9\end{cases}}\)
Tìm min,max P=a+b+c
Ta có
(a+3c)+(a+2b)=8+9
\(\Rightarrow\)2a+2b+3c=17
\(\Rightarrow2\left(a+b+c\right)+c=17\)
+, Nếu a+b+c đạt max thì 2(a+b+c) đạt max\(\Rightarrow\)c đạt min\(\Rightarrow\)c=0
\(\Rightarrow\)GTLN a+b+c=8,5
Vậy...
+Nếu a+b+c đạt min thì 2(a+b+c) đạt min \(\Rightarrow\)c đạt max \(\Rightarrow\)c=17
\(\Rightarrow\)GTLN a+b+c =0
Vậy ....
Cho a,b,c là các số không âm thoả mãn 2a+b=6-3c và 3a+4b=3c+4. Tìm giá trị lớn nhất và nhỏ nhất của E= 2a+3b-4c
Help me
Cho 3 số ko âm x,y,z thỏa mãn phương trình
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}}\)
Tìm GTNN và GTLN của BT P= 2x+3y-4z
cho a,b,c >=0 thảo mãn 2a+b=6-3c và 3a+4b=3c+4
tìm MIN và MAX của B = 2a+3b-4c