Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
jhwbsbsnzm
Xem chi tiết
xKraken
11 tháng 2 2019 lúc 16:44

Ta có: \(\frac{AB}{3}=\frac{AC}{4}\)

=> \(\frac{AB}{AC}=\frac{3}{4}\)

Độ dài cạnh AB là:

14 : (3 + 4) x 3 = 6 (cm)

Độ dài cạnh AC là:

14 - 6 = 8 (cm)

Áp dụng định lý Py-ta-go, ta có:

\(AB^2+AC^2=BC^2=6^2+8^2=100=BC^2=>BC=10\)

                       Đ/S: 10

Chúc bạn học tốt !!!

Kuroba Kaito
11 tháng 2 2019 lúc 16:44

Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

              \(\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{14}{7}=2\)

=> \(\hept{\begin{cases}\frac{AB}{3}=2\\\frac{AC}{4}=2\end{cases}}\)=> \(\hept{\begin{cases}AB=2.3=6\\AC=2.4=8\end{cases}}\)

Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A

=> BC2 = AB2 + AC2 = 62 + 82 = 36 + 64 = 100

=> BC = 10

Vậy ....

Vĩnh Khang Bùi
Xem chi tiết
Nguyễn Trúc Phương
Xem chi tiết
jhwbsbsnzm
Xem chi tiết
Nguyễn Bảo Minh Châu
Xem chi tiết
Phạm Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 14:09

Bài 2: 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)

nên HC=3HB

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2=48\)

\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 14:11

Bài 1:

ta có: \(AB=\dfrac{1}{2}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=1\left(cm\right)\)

\(\Leftrightarrow HC=4\left(cm\right)\)

hay BC=5(cm)

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Lê Quốc
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
Gia Huy
6 tháng 7 2023 lúc 15:27

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

nongvietthinh
Xem chi tiết
Trương Phúc Uyên Phương
28 tháng 7 2015 lúc 11:32

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

Cao Linh Chi
13 tháng 2 2016 lúc 11:14

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

ko ten ko tuoi
5 tháng 3 2016 lúc 21:08

viet ba dao nhu the co ma lam dc!!!