\(\frac{a+\sqrt{a}+1}{a+1}>1\)
Rút gọn các biểu thức
\(A=\left(1+\frac{\sqrt{a}-1}{a-\sqrt{a}}\right):\left(\frac{a+\sqrt{a}}{a-1}\frac{\sqrt{a}}{a-\sqrt{a}}\right)\)
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)
\(C=\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{1}{a-1}\right):\frac{a}{2+2\sqrt{a}}\)
Rút gọn biểu thức:
\(A=\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}+\left[\sqrt{a}-\frac{1}{\sqrt{a}}\right]\left[\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right]\)
Điều kiện : a> 0 ; a khác 1
\(A=\frac{\left(\sqrt{a}\right)^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}\right)^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(A=\frac{a+\sqrt{a}+1}{\sqrt{a}}-\frac{a-\sqrt{a}+1}{\sqrt{a}}+\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{2a+2}{a-1}\right)\)
\(A=\frac{2\sqrt{a}}{\sqrt{a}}+\frac{2\left(a+1\right)}{\sqrt{a}}=2+\frac{2\sqrt{a}\left(a+1\right)}{a}\)
Rút gọn (ĐKXĐ)
\(A=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{1}{a-1}\right):\frac{a}{2+2\sqrt{a}}\)
\(A=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\left(a>0;a\ne1\right)\)
\(A=\frac{\sqrt{a}.\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}-1\right)+2}{a-1}\)
\(A=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{a-1}\)
\(A=\frac{\sqrt{a}+1}{\sqrt{a}}:\frac{1}{\sqrt{a}-1}\)
\(A=\frac{\sqrt{a}+1}{\sqrt{a}}.\left(\sqrt{a}-1\right)=\frac{a-1}{\sqrt{a}}\)
Vậy..............
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{1}{a-1}\right):\frac{a}{2+2\sqrt{a}}\)( điều kiện như trên )
\(B=\frac{\sqrt{a}\left(\sqrt{a}-1\right)-\sqrt{a}\left(\sqrt{a}+1\right)+1}{a-1}:\frac{a}{2\left(1+\sqrt{a}\right)}\)
\(B=\frac{a-\sqrt{a}-a-\sqrt{a}+1}{a-1}:\frac{a}{\left(\sqrt{a}+1\right).2}\)
\(B=\frac{1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}.\frac{\left(\sqrt{a}+1\right).2}{a}\)
\(B=\frac{2\left(1-2\sqrt{a}\right)}{a\left(\sqrt{a}-1\right)}\)
Vậy.........
_Minh ngụy_
V=\(\left(\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+1}\right)\left(\frac{x-1}{\sqrt{x}+1}-2\right)\)
W= \(\left(\frac{\sqrt{a}-1}{3\sqrt{a}+\left(\sqrt{a}-1\right)^2}-\frac{1-3\sqrt{a}+a}{a\sqrt{a}-1}-\frac{1}{\sqrt{a}-1}\right):\frac{a+1}{1-\sqrt{a}}\)
ĐKXĐ:...
\(V=\left(\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{x-1-2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)
\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{x-2\sqrt{x}-3}{\sqrt{x}+1}\right)=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(W=\left(\frac{\sqrt{a}-1}{a+\sqrt{a}+1}-\frac{a-3\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\frac{1}{\sqrt{a}-1}\right).\left(\frac{1-\sqrt{a}}{a+1}\right)\)
\(=\left(\frac{\left(\sqrt{a}-1\right)^2-a+3\sqrt{a}-1-\left(a+\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{1-\sqrt{a}}{a+1}\right)\)
\(=\left(\frac{-\left(a+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{-\left(\sqrt{a}-1\right)}{a+1}\right)=\frac{1}{a+\sqrt{a}+1}\)
Rút gọn biểu thức:
A= \(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{â+\sqrt{a}}+\left[\sqrt{a}-\frac{1}{\sqrt{a}}\right]\left[\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right]\)
Rút gọn biểu thức:
a) \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab+\sqrt{a}}}{\sqrt{ab}-1}+1\right)\)
b) \(1+\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\left(\frac{a-\sqrt{a}}{2\sqrt{a}-1}\right)\)
rút gọn các bt sau:
(\(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\)) (\(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\))
\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}\)
\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
rút gọn biểu thức \(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a+1}}{\sqrt{a}}+\left(\sqrt{a-}\frac{1}{\sqrt{a}}\right).\left(\frac{3\sqrt{a}}{\sqrt{a-1}}-\frac{2+\sqrt{a}}{\sqrt{a+1}}\right)\)
\(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\left(\sqrt{\frac{1}{a^2}}-1-\frac{1}{a}\right)\)
\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{1-\sqrt{a}}{\sqrt{a}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}+\frac{\sqrt{a}}{1-a}\right)\)
a) Rút gọn A
b) Tính A khi a =\(1-\frac{\sqrt{3}}{2}\)
c) So sánh A với 2
Câu C : Lần đầu làm dạng này :))
Xét hiệu A - 2 , ta có :
\(A-2=\frac{2\sqrt{a}+2-4a-2}{2a+1}=\frac{2\sqrt{a}-4a}{2a+1}=\frac{2\sqrt{a}\left(1-2\sqrt{a}\right)}{2a+1}\)
Ta thấy :
+) Do \(a\ge0\)\(\Rightarrow2\sqrt{a}\left(1-2\sqrt{a}\right)\le0\)
+) a khác 1 ; \(a\ge0\)=> 2a + 1 > 0
\(\Rightarrow\frac{2\sqrt{a}\left(1-2\sqrt{a}\right)}{2a+1}\le0\)
\(\Leftrightarrow A< 2\)
P/s : sai bỏ qua :))
\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{1-\sqrt{a}}{\sqrt{a}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}+\frac{\sqrt{a}}{1-a}\right)\)
ĐKXĐ : \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
\(A=\left(\frac{\sqrt{a}+1+1-\sqrt{a}}{\sqrt{a}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{a-1}\right)\)
\(A=\frac{2}{\sqrt{a}-1}\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(A=\frac{2}{\sqrt{a}-1}\div\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(A=\frac{2}{\sqrt{a}-1}\div\left(\frac{a+2\sqrt{a}+1+a-\sqrt{a}-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(A=\frac{2}{\sqrt{a}-1}\div\frac{2a+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(A=\frac{2}{\sqrt{a}-1}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{2a+1}\)
\(A=\frac{2\left(\sqrt{a}+1\right)}{2a+1}\)
b) \(a=1-\frac{\sqrt{3}}{2}=\frac{2}{2}-\frac{\sqrt{3}}{2}=\frac{2-\sqrt{3}}{2}\)( tmđk )
Rồi từ đây thế vô :)
c) Nhờ cao nhân làm tiếp chứ em mới lớp 8 thôi ạ :(