1\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2n}=\frac{2n-1}{2n}\)
\(Cm:\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2n-1}{2n}< \frac{2}{\sqrt{2n+1}}\)
Chứng minh :
\(\frac{2n-1}{2n}\le\sqrt{\frac{3n-2}{3n+1}}\). Suy ra : \(\frac{1}{2}\times\frac{3}{4}\times...\times\frac{2n-1}{2n}\le\frac{1}{\sqrt{3n+1}}\)
chứng minh : \(\frac{1}{2}.\frac{3}{4}...\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)
\(\frac{A}{B}=\frac{\frac{1}{1\left(2n-1\right)}+\frac{1}{3\left(2n-3\right)}+\frac{1}{5\left(2n-5\right)}+.....+\frac{1}{\left(2n-3\right)3}+\frac{1}{\left(2n-1\right)1}}{1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{2n-1}}\)
\(Chứng\)\(minh:\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< \frac{2}{\sqrt{2n+1}}\)
Khi n=1, ta được \(\frac{1}{2}< \frac{1}{\sqrt{2.1+1}}\Leftrightarrow\frac{1}{2}< \frac{1}{\sqrt{3}}\) : đúng
giả sử mệnh đề đúng khi n=k\(\left(k\ge1\right)\), tức là \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{2k-1}{2k}< \frac{1}{\sqrt{2k+1}}\)
Bây giờ ta chứng minh mệnh đề cũng đúng khi n=k+1, tức là ta phải chứng minh BĐT sau:
\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2k-1}{2k}.\frac{2k+1}{2\left(k+1\right)}< \frac{1}{\sqrt{2k+3}}\)
Thật vậy, theo giả thiết quy nạp \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2k-1}{2k}< \frac{1}{\sqrt{2k+1}}\)
\(\Leftrightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{2k-1}{2k}.\frac{2k+1}{2\cdot\left(k-1\right)}< \frac{1}{\sqrt{2k+1}}.\frac{2k+1}{2\left(k+1\right)}\)
Ta cần chứng minh \(\frac{1}{\sqrt{2k+1}}.\frac{2k+1}{2\left(k+1\right)}< \frac{1}{\sqrt{2k+3}}\Leftrightarrow\frac{1}{\left(2k+1\right)}.\frac{\left(2k+1\right)^2}{4\left(k+1\right)^2}< \frac{1}{\left(2k+3\right)}\)
\(\Leftrightarrow\left(2k+1\right)^2\left(2k+3\right)< 4\left(k+1\right)^2\left(2k+1\right)\Leftrightarrow0< 2k+1\): luôn đúng
=>mệnh đề đúng với n=k+1
Vậy theo phương pháp quy nạp toán học \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)với mọi n nguyên dương.
bạn ơi sao thay n=1 lại ra VT=1/2 ??
Rút gọn biểu thúc
\(\frac{A}{B}=\frac{\frac{1}{1\left(2n-1\right)}+\frac{1}{3\left(2n-3\right)}+\frac{1}{5\left(2n-5\right)}+...+\frac{1}{\left(2n-3\right).3}+\frac{1}{\left(2n-1\right).1}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2n-1}}\)
\(\frac{1}{1.\left(2n-1\right)}+\frac{1}{3.\left(2n-3\right)}+...+\frac{1}{\left(2n-3\right).3}+\frac{1}{\left(2n-1\right).1}\)
\(=\frac{1}{2n}\left[\frac{2n-1+1}{1\left(2n-1\right)}+\frac{2n-3+3}{3\left(2n-3\right)}+...+\frac{3+2n-3}{\left(2n-3\right).3}+\frac{1+2n-1}{\left(2n-1\right).1}\right]\)
\(=\frac{1}{2n}\left(1+\frac{1}{2n-1}+\frac{1}{3}+\frac{1}{2n-3}+...+\frac{1}{2n-3}+\frac{1}{3}+\frac{1}{2n-1}+1\right)\)
\(=\frac{1}{n}\left(1+\frac{1}{3}+...+\frac{1}{2n-3}+\frac{1}{2n-1}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{1}{n}\).
Rút gọn :\(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}+\frac{1}{2n\left(2n+2\right)}\)
tự làm là hạnh phúc của mỗi công dân.
CMR \(\forall n\in\)N* ta có
\(\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+...+\left(\frac{1}{2n-1}-\frac{1}{2n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)
Chứng minh rằng :
\(\frac{\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2n}}{\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2n-1}}< \frac{n}{n+1}\)