Tìm các số nguyên dương n sao cho \(2^{2^n}\)+5 là số nguyên tố
Tìm các số nguyên dương n sao cho 2^2^n+5 là số nguyên tố
a, CMR: với mọi số n nguyên dương đều có: A=5n(5n+1)-6n(3n+2) chia hết cho 91
b, Tìm tất cả các số nguyên tố p sao cho p2+14 là số nguyên tố
Câu 2:
1)Tìm số nguyên tố P sao cho các số P+2 và P+10 là số nguyên tố
2)Tìm giá trị nguyên dương nhỏ hơn 10 của x và y sao cho 3x-4y= -21
3)Cho phân số :A=n-5/n+1 (n thuộc Z;n khác -1)
a)Tìm n để A là số nguyên.
b)Tìm n để A tối giản.
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42
tìm số nguyên dương n nhỏ nhất sao cho n2+5.n+1 là số nguyên tố
n2+5n+1=n(n+5)+1
Với n E N thì n+5>1
=> n2+5n+1 thì n=1
n=1 mình chắc luôn
bạn gặp trong violympic vòng 13 đúng ko
nhớ k nha(@_@)
Tìm số nguyên dương n sao cho n^2/180-n là số nguyên tố
Tìm tất cả các số nguyên dương m,n sao cho p = m^2+n^2 là số nguyên tố và m^3+n^3 - 4 chia hết cho p
Tìm các số nguyên dương n sao cho \(\frac{n^2}{60-n}\)là một số nguyên tố
35485+111111923873=
a.Chứng minh rằng với mọi số nguyên dương đều có : A=5n (5n+1)-6n(3n+2) chia hết cho 91
b. Tìm tất cả các số nguyên tố P sao cho P2+14 là số nguyên tố
b, +, Nếu p=2 thì : p^2+14 = 18 ko tm
+, Nếu p=3 thì : p^2+14 = 23 tm
+, Nếu p > 3 => p ko chia hết cho 3
=> p^2 chia 3 dư 1 => p^2+14 chia hết cho 3
Mà p^2+14 > 3 => p^2+14 là hợp số
Vậy p = 3
Tk mk nha
a) Chứng minh rằng với mọi số n nguyên dương đều có:
A= 5n*(5n+1) - 6n*(3n+ 2n)
b) Tìm tất cả các số nguyên tố P sao cho P2+ 14 là số nguyên tố