Phân tích đa thức sau thành nhân tử .
ab(b - a) - bc(b - c) - ac(c - a)
Bài 2 : Phân tích các đa thức sau thành nhân tử: a) A = ab(a - b) + bc ( b - c) + ac ( c - a) .
\(=a^2b-ab^2+b^2c-bc^2+ac^2-a^2c\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a^2-bc-ab-ac\right)\)
\(=\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]\)
PHÂN TÍCH ĐA THỨC SAU THÀNH NHÂN TỬ
a) ab(a+b)-bc(b+c)+ac(a-c)
Phân tích đa thức sau thành nhân tử .
ab(b - a) - bc(b - c) - ac(c - a)
\(ab\left(b-a\right)-bc\left(b-c\right)-ac\left(c-a\right)\)
\(=ab\left(b-a\right)-b^2c+bc^2-ac^2+a^2c\)
\(=ab\left(b-a\right)+c^2\left(b-a\right)-c\left(b^2-a^2\right)\)
\(=\left(b-a\right)\left(ab+c^2-bc-ca\right)\)
\(=\left(b-a\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)
\(=\left(b-a\right)\left(a-c\right)\left(b-c\right)\)
phân tích các đa thức sau thành nhân tử;
ab*(a+b)-bc*(b+c)+ac*(c+a)+abc
Phân tích đa thức sau thành nhân tử .
ab(b - a) - bc(b - c) - ac(c - a)
\(ab\left(b-a\right)-bc\left(b-c\right)-ac\left(c-a\right)\)
\(=ab\left(b-a\right)-\left(b^2c-bc^2\right)-\left(ac^2-a^2c\right)\)
\(=ab\left(b-a\right)-b^2c+bc^2-ac^2+a^2c\)
\(=ab\left(b-a\right)-\left(b^2c-a^2c\right)+\left(bc^2-ac^2\right)\)
\(=ab\left(b-a\right)-c\left(b^2-a^2\right)+c^2\left(b-a\right)\)
\(=ab\left(b-a\right)-c\left(b-a\right)\left(b+a\right)+c^2\left(b-a\right)\)
\(=\left(b-a\right)\left[ab-c\left(b+a\right)+c^2\right]=\left(b-a\right)\left[ab-\left(bc+ac\right)+c^2\right]\)
\(=\left(b-a\right)\left(ab-bc-ac+c^2\right)=\left(b-a\right)\left[\left(ab-bc\right)-\left(ac-c^2\right)\right]\)
\(=\left(b-a\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]=\left(b-a\right)\left(b-c\right)\left(a-c\right)\)
Phân tích đa thức sau thành nhân tử .
ab(b - a) - bc(b - c) - ac(c - a)
\(ab\left(b-a\right)-bc\left(b-c\right)-ac\left(c-a\right)\)
\(=ab\left[\left(b-c\right)+\left(c-a\right)\right]-bc\left(b-c\right)-ac\left(c-a\right)\)
\(=ab\left(b-c\right)+ab\left(c-a\right)-bc\left(b-c\right)-ac\left(c-a\right)\)
\(=\left[ab\left(b-c\right)-bc\left(b-c\right)\right]+\left[ab\left(c-a\right)-ac\left(c-a\right)\right]\)
\(=\left(b-c\right)\left(ab-bc\right)+\left(c-a\right)\left(ab-ac\right)\)
\(=-b\left(b-c\right)\left(c-a\right)+a\left(c-a\right)\left(b-c\right)\)
\(=\left(b-c\right)\left(c-a\right)\left(a-b\right)\)
Phân tích đa thức ab(a+b)-bc(b+c)-ac(c-a) thành nhân tử ,ta được
\(=a^2b+ab^2-b^2c-bc^2-ac^2+a^2c\)
\(=a^2\left(b+c\right)+a\left(b-c\right)\left(b+c\right)-bc\left(b+c\right)\)
\(=\left(b+c\right)\left(a^2+ab-ac-bc\right)\)
\(=\left(b+c\right)\left[a\left(a+b\right)-c\left(a+b\right)\right]\)
\(=\left(b+c\right)\left(a+b\right)\left(a-c\right)\)
Phân tích đa thức A = ab(a + b) – bc(b + c) – ac(c – a) thành nhân tử ta được
A. (a + b)(a – c)(b – c)
B. (a + b)(a – c)(b + c)
C. (a – b)(a – c)(b – c)
D. (a + b)(c – a)(b + c)
Ta có b + c = (a + b) + (c – a) nên
A = ab(a + b) – bc[(a + b) + (c – a)] – ac(c – a)
= ab(a + b) – bc(a + b) – bc(c – a) – ac(c – a)
= b(a + b)(a – c) – c(c – a)(b + a)
= (a + b)(a – c)(b + c)
Đáp án cần chọn là: B
phân tích đa thức thành nhân tử
bc(a+d)(b-c)+ac(b+d)(c-a)+ab(c+d)(a-b)