Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
toi la toi toi la toi
Xem chi tiết
Liên Đào
Xem chi tiết
Hoàng Phúc
23 tháng 1 2017 lúc 21:11

-(z+x)3  mới đúng-

đặt x+y=a , y+z=b , z+x=c thì a+b+c=2(x+y+z)

ta có 8(x+y+z)3-(x+y)3-(y+z)3-(z+x)3=[2(x+y+z)]3-(x+y)3-(y+z)3-(z+x)3=(a+b+c)3-a3-b3-c3=3(a+b)(b+c)(c+a) 

=3(x+2y+z)(y+2z+x)(z+2x+y)

trần thị thùy phương
Xem chi tiết
Tiến Bùi Việt
Xem chi tiết
vũ trang_8a
Xem chi tiết
Tùng Nguyễn
Xem chi tiết
tran van binh
Xem chi tiết
Nguyễn Thị Bích Thảo
Xem chi tiết
Lê Tài Bảo Châu
9 tháng 10 2019 lúc 21:57

Hướng dẫn

Đặt là x,y,z

Chứng minh được là \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Nguyễn Hoàng Tú
Xem chi tiết
Viet Xuan
10 tháng 11 2021 lúc 15:05

x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz

=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz

=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz

=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3

=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]

=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)

=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]

=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]

=(x+y+z)(x-y-z)(z-x-y)