Cho \(x\) là số nguyên, chứng minh rằng \(\sqrt{23+x^{11}}\) không phải là số nguyên
Chứng minh rằng không tồn tại đồng thời các số nguyên dương x,y sao cho: \(\sqrt{x}+\sqrt{y}=\sqrt{p_1p_2}\) trong đó \(p_1,p_2\) là các số nguyên tố khác nhau.
Cho x , y là hai số nguyên biết 3x + 10 chia hết cho 23 chứng minh rằng x + 11y chia hết cho 23
vì x chia hết cho 23 và 11 nhân y cũng chia hết cho 23
Cho biểu thức: C=-1/21+(-1/22)+(-1/23)+...+(-1/79)+(-1/80) Chứng minh rằng : C không phải là số nguyên
Toán Tuổi Thơ:
Chứng minh rằng số \(\sqrt{n}+\sqrt{n+4}\) không phải là một số nguyên dương với mọi số nguyên dương n.
Đặt A = \(\sqrt{n}+\sqrt{n+4}\)
=> \(A^2=n+n+4+2\sqrt{n\left(n+4\right)}\) = \(2n+4+2\sqrt{n\left(n+4\right)}\)
Vì n nguyên dương nên 2n + 4 nguyên dương
Mặt khác n(n+4) >0 , không là số chính phương nên \(\sqrt{n\left(n+4\right)}\) , không phải số nguyên dương
=> \(2\left(\sqrt{n\left(n+4\right)}\right)\) không phải số nguyên dương
=> A2 không phải số nguyên dương => A không phải số nguyên dương ( đpcm)
============================
Các bạn giải nhanh nha!
Ngày mai lúc 8h 30 (hoặc sớm hơn) mình sẽ chấm và đưa ra đáp án.
giả sử \(\sqrt{n}\)+\(\sqrt{n+4}\) là số nguyên dương
khi đó (\(\sqrt{n}\)+\(\sqrt{n+4}\))2 cũng là số nguyên dương
->n+2.\(\sqrt{n\left(n+4\right)}\)+n+4 là số nguyên dương
->2n+4+2\(\sqrt{n\left(n+4\right)}\) là số nguyên dương
tổng trên là số nguyên dương <=>\(\sqrt{n\left(n+4\right)}\)là số nguyên<=>n(n+4) là bình phương của 1 số
Ta thấy với mọi n nguyên dương thì nếu
n=1 thì không thỏa mãn
n=2 thì không thỏa mãn
do đó với mọi n>2 thì tất cả các số là bình phương 1 số đều có dạng (n+2)2 =n2+4n+4
mà để là bình phương 1 số thì n(n+4) phải thêm 4 đơn vị với mọi số n (n>2)
do đó n(n+4) không thể là 1 số chính phương
do đó điều giả sử là không đúng
vậy KL
Chứng minh 4/(\(\(\sqrt{x}\)\) -3) là số vô tỉ nếu x là số nguyên không phải số chính phương
Mong mn giúp đỡ
"Khai bút" mùng 1 ròi mới đi chơi đc. ^^
Giả sử \(\sqrt{x}\)là số hữu tỉ thì nó viết được dưới dạng:
\(\sqrt{x}=\frac{m}{n}\) với \(m,n\inℕ\), \(\left(m,n\right)=1\)
Do x không là số chính phương nên \(\frac{m}{n}\)không là số tự nhiên, do đó n > 1.
Ta có \(m^2=xn^2\). Gọi p là ước nguyên tố nào đó của n, thế thì \(m^2⋮p\), do đó\(m⋮p\). Như vậy p là ước nguyên tố của m và n, trái với (m,n) = 1
Suy ra \(\sqrt{x}\)là số vô tỉ
\(\Rightarrow\sqrt{x}-3\)là số vô tỉ
Vậy \(\frac{4}{\sqrt{x}-3}\)là số vô tỉ
mình bảo chứng minh 4/căn 2 của x - 3 là số vô tỉ nếu căn 2 của x trừ 3 vô tỉ
chứng minh rằng: không tồn tại số nguyên x,y,z sao cho x2 - 4yz= 23
Cho C = 1/11 + 1/12 = 1/13 +...+ 1/19
Chứng minh rằng C ko phải là số nguyên
b) Cho D = 2( 1/3 + 1/15 + 1/35 +...+1/n(n+2)) với n thuộc N*
Chứng minh rằng D ko phải lf số nguyên
c) Cho E = 1/3 + 1/4 + 1/5 + 2/7 + 2/9 + 2/11
Chứng minh rằng E ko phải là số nguyên
Bài khó quá, giúp mình nha!
cho E = 1/3+1/4+1/5+2/7+2/9+2/11.
Chứng minh rằng E không phải là số nguyên
ta thấy : các phân số của biểu thức E đều bé hơn 1.
Suy ra: biểu thức E >6.
Mà 6 là số nguyên dương .
nên biểu thức E không phải là số nguyên (đpcm)
Cho x,y là số nguyên thỏa mãn 3x-5y chia hết cho 23. Chứng minh rằng 5x-16y cũng thỏa mãn chia hết cho 23 ?
xét hiệu A=5(3x-5y)-3(5x-16y)=23y
=> A chia hết cho 23,mà 3x-5y chia hết cho 23=>3(5x-16y) chia hết cho 23
Mà (3;23)=1=>5x-16y chia hết cho 23(đpcm)