Bài 5. Cho ∆ABC cân tại A, M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a) Chứng minh : ∆AMD=∆CMB, từ đó chứng minh AD//BC.
b) Chứng minh: ∆ACD cân
Bài 5. Cho ∆ABC cân tại A, M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a) Chứng minh : ∆AMD=∆CMB, từ đó chứng minh AD//BC.
b) Chứng minh: ∆ACD cân
a) Xét \(\Delta AMD\)và \(\Delta BMC\)có:
\(\widehat{AMD}=\widehat{BMC}\left(đ^2\right)\)
\(BM=MD\left(gt\right)\)
\(AM=MC\left(gt\right)\)
\(\Rightarrow\Delta AMD=\Delta CBM\left(cgc\right)\)(đpcm)
\(\Rightarrow\widehat{ADM}=\widehat{MBC}\)mà đấy là 2 góc slt của 2 đường thẳng AD và BC \(\Rightarrow\)AD//BC (đpcm)
Bài 5. Cho ∆ABC cân tại A, M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a) Chứng minh : ∆AMD=∆CMB, từ đó chứng minh AD//BC.
b) Chứng minh: ∆ACD cân
a) Xét \(\Delta AMD\&\Delta CMB\)có: \(\hept{\begin{cases}AM=MC\left(gt\right)\\\widehat{M_1}=\widehat{M_2}\left(đ^2\right)\\BM=MD\left(gt\right)\end{cases}\Rightarrow\Delta AMD=\Delta CMB\left(cgc\right)}\)
\(\Rightarrow\widehat{D_1}=\widehat{B}_1\)mà đây là 2 goc so le trong của 2 đường thẳng AD và BC
=> AD//BC
Vậy \(\Delta AMD=\Delta CMD\); AD//BC
Bài 5. Cho ∆ABC cân tại A, M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a) Chứng minh : ∆AMD=∆CMB, từ đó chứng minh AD//BC.
b) Chứng minh: ∆ACD cân
Giúp mk với mk cần gấp
Bài 5. Cho ∆ABC cân tại A, M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a) Chứng minh : ∆AMD=∆CMB, từ đó chứng minh AD//BC.
b) Chứng minh: ∆ACD cân
Giúp mk với mk cần gấp ai nha nhanh mk sẽ tick và kết bạn nha
Bài Làm :
a) +) Xét tam giác AMD và tam giác CMB có :
AM = CM ( M là trung điểm của AC )
Góc AMD = góc CMB ( 2 góc đối đỉnh )
MD = MB ( GT )
=> Tam giác AMD = tam giác CMB ( c-g-c)
=> Góc ADM = góc CBM ( 2 góc tương ứng )
Mà góc ADM và góc CBM ở vị trí sole trong
=> AD // BC ( dấu hiệu nhận biết )
b) Do AD // BC ( chứng minh trên )
=> góc DAC = góc ACB ( tính chất )
Xét tam giác ACD và tam giác CAB có :
AD = CB ( tam giác AMD = tam giác CMB )
góc DAC = góc ACB
AC : cạnh chung
=> tam giác ACD = tam giác CAB
Mà tam giác CAB cân A
=> tam giác ACD cân tại C
5. Cho ∆ABC cân tại A, M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a) Chứng minh : ∆AMD=∆CMB, từ đó chứng minh AD//BC.
b) Chứng minh: ∆ACD cân
Giúp mk với mk cần gấp mk sẽ tick cho các bạn và kết bạn nữa nha
5. Cho ∆ABC cân tại A, M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a) Chứng minh : ∆AMD=∆CMB, từ đó chứng minh AD//BC.
b) Chứng minh: ∆ACD cân
Giúp mk với mk cần gấp mk sẽ tick cho các bạn và kết bạn nữa nha
HÌNH ẢNH CHỈ MANG TÍNH CHẤT MINH HỌA
a) +) Xét Δ AMD và Δ CMB có
AM = CM ( gt)
\(\widehat{AMD}=\widehat{CMB}\) ( 2 góc đối đỉnh)
MD = MB ( gt)
⇒ ΔAMD = ΔCMB (c-g-c)
⇒ \(\widehat{ADM}=\widehat{CBM}\) ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
⇒ AD // BC
b) Xét Δ CMD và Δ AMB có
CM = AM ( gt)
\(\widehat{CMD}=\widehat{AMB}\) ( 2 góc đối đỉnh )
MD = MB ( gt)
⇒ ΔCMD = ΔAMB ( c-g-c)
⇒ CD = AB (1) ( 2 cạnh tương ứng )
+) Xét ΔABC cân tại A
⇒ AB = AC (2) ( tính chất tam giác cân )
Từ (1) và (2) ⇒ CD = AC
+) Xét ΔACD có
CD = CA ( cmt)
⇒ΔACD cân tại C
Câu b k chắc lắm tại vì nhìn hình vẽ thế kia thì vừa giống cân ở D và vừa giống đều luôn
Sai thì thôi nhá
@@ Học tốt
Chiyuki Fujito
5. Cho ∆ABC cân tại A, M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a) Chứng minh : ∆AMD=∆CMB, từ đó chứng minh AD//BC.
b) Chứng minh: ∆ACD cân
Giúp mk với mk cần gấp mk sẽ tick cho các bạn và kết bạn nữa nha
Bài làm
Giả thiết kết luận tự viết. Chữ mik sẽ xấu lắm. Thông cảm nha.
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a) Chứng minh AD = BC.
b) Chứng minh CD vuông góc với AC
c) chứng minh BC//AD
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hbh
=>AB=CD và AB//CD
b: AB//CD
AB vuông góc AC
=>CD vuông góc AC
c: ABCD là hbh
=>BC//AD
Cho A ABC cân tại A. Gọi M là trung điểm của AC . Trên tia đối của tia MB lấy điểm D sao cho DM = BM a . Chứng minh A BMC = DMA và AD // BC . b . Chứng minh ACD là tam giác cân . c . Trên tia đối của tia CA lấy điểm E sao cho CA = CE . Chứng minh C là trọng tâm của tam giác DBE ?