Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
I love dễ thương
Xem chi tiết
Haru 1108
Xem chi tiết
tth_new
29 tháng 10 2018 lúc 10:10

Ta có: \(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3C-C=2C=1-\frac{1}{3^{99}}\Rightarrow C=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}^{\left(đpcm\right)}\)

P/s: Giải thích nếu như bạn không hiểu khúc cuối.

Ta có: \(2C=1-\frac{1}{3^{99}}\Rightarrow C=\frac{1}{2}\left(1-\frac{1}{3^{99}}\right)\)

\(=\frac{1}{2}.1-\frac{1}{2}.\frac{1}{3^{99}}=\frac{1}{2}-\frac{1}{2.3^{99}}\)

Trương Thị Ngọc Anh
Xem chi tiết
Nguyễn Thành Công
3 tháng 12 2015 lúc 22:50

Từ \(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)(*)

và rõ ràng a,b,c khác 0 (theo hệ thức cần chứng minh) nên chia hai vế của (*) cho abc ta được \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)đặt x=1/a; y=1/b; z=1/c ta được x+y+z=0 thì hệ thức cần chứng minh là x3+y3+z3=3xyz đến đây mọi việc trở nên đơn giản hơn

Mời bạn giải tiếp

le duc nhan
Xem chi tiết
Nijino Yume
13 tháng 12 2018 lúc 15:17

a) A=21+22+23+...+22010

    A=(21+22)+(23+24)+.....+(22009+22010)

    A=(21x3)+(23x3)+.....+(22009x3)

    A=3x(21+23+.......+22009)

Vậy A chia hết cho 3.

NHỮNG CÂU CÒN LẠI BẠN LÀM TƯƠNG TỰ !

Nguyễn Trà Linh
Xem chi tiết
kudo shinichi
20 tháng 9 2017 lúc 11:08

C=\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

3C=3.( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )

3C-C=( \(1+\frac{1}{3}+...+\frac{1}{3^{98}}\) ) - ( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )

2C= 1 - \(\frac{1}{3^{99}}\)< 1

\(\Rightarrow\)C= \(\left(1-\frac{1}{3^{99}}\right)\div2\)<\(\frac{1}{2}\)

                                         Điều Phải Chứng Minh

Nguyễn Huỳnh Tuấn Kiệt
Xem chi tiết
Nguyen Thuy Anh
4 tháng 12 2014 lúc 16:16

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

Ngô Lê Bách
10 tháng 12 2014 lúc 10:48

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

Bách
4 tháng 2 2017 lúc 12:57

em chịu!!!!!!!!!!!

Trần Tuấn Kiệt
Xem chi tiết
Phạm Quang Bách
7 tháng 10 2021 lúc 20:16

1.Cho a,b,c,da,b,c,d là các số nguyên thỏa mãn a3+b3=2(c3−d3)a3+b3=2(c3−d3) . Chứng minh rằng a+b+c+d chia hết cho 3

2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng 1a3(b+c)+1b3(c+a)+1c3(a+b)≥32

Khách vãng lai đã xóa
ホアン イエン ビー
Xem chi tiết

\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3C=3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(\Rightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)

\(\Rightarrow3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(\Rightarrow2C=1-\frac{1}{3^{99}}\)

MÀ \(2C=1-\frac{1}{3^{99}}< 1\Rightarrow C=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)

Từ đó ta suy ra điều phải chứng minh

Khách vãng lai đã xóa
Nguyen Linh Nhi
Xem chi tiết
Trần Việt Anh
14 tháng 11 2018 lúc 19:59

1)A=987