so sánh M=2017/1x2 +2017/3x4+....+2017/99.100 và N=2018/51+2018/52+...+2018/100
giúp mk vs nha
Cho M= 2017/1.2 + 2017/2.3 + 2017/3.4 +.....+ 2017/99.100
P= 2018/51 + 2018/52 + 2018/53 +.........+ 2018/100
So Sánh M với P
So sánh
M=\(\frac{2018}{51}\)+ \(\frac{2018}{52}\)+....... +\(\frac{2018}{100}\)
N=\(\frac{2017}{1.2}\)+ \(\frac{2017}{3.4}\)+ ....... +\(\frac{2017}{99.100}\)
CÁC BẠN GIÚP MK NHANH NHA
So sánh A và B:
A=2015/2016+2016/2017+2017/2018
B=2015+2016+2017/2016+2017+2018
giúp mk nha!!!!!!!
A<B(2015/2016<2015;2016/2017<2016;2017/2018<2017)
A = 2015/2016 + 2016/2017 + 2017/2018 và B = (2015 + 2016 + 2017)/(2016 + 2017 + 2018)
so sánh nha
GIÚP MÌNH VS MAI THHI RỒI
Ta có:2015/2016>2015/2016+2017+2018
2016/2017>2016/2016+2017+2018
2017/2018>2017/2016+2017+2018-Mình áp dụng so sánh phân số cùng tử đấy.
Suy ra2015/2016+2016/2017+2017/2018>(2015+2016+2017)/(2016+2017+2018)=B
So sánh
P= 2016/2017+2017/2018+2018/2019 và
Q= 2+2016+2017+2018/2017+2018+2019
Ghi đầy đủ các bước hộ mk nha
#)Giải :
\(Q=2+\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
Ta thấy : \(2>\frac{2016}{2017};2>\frac{2017}{2018};2>\frac{2018}{2019}\left(1\right)\)
\(\frac{2016}{2017+2018+2019}< \frac{2016}{2017}\left(2\right)\)
\(\frac{2017}{2017+2018+2019}< \frac{2017}{2018}\left(3\right)\)
\(\frac{2018}{2017+2018+2019}< \frac{2018}{2019}\left(4\right)\)
Từ (1) (2) (3) (4) \(\Rightarrow P>Q\)
So sánh: (172017 +162017)2018 và (172018 +162018)2017
Giúp mk vs ngày kia mk phải nộp rồi
Cảm ơn mọi người trước nha!
🤗🤗🤗🤗🤗
Xét: \(\frac{\left(17^{2017}+16^{2017}\right)^{2018}}{17^{2017.2018}}=\left(\frac{17^{2017}+16^{2017}}{17^{2017}}\right)^{2018}=\left(1+\left(\frac{16}{17}\right)^{2017}\right)^{2018}\)
\(\frac{\left(17^{2018}+16^{2018}\right)^{2017}}{17^{2017.2018}}=\left(\frac{17^{2018}+16^{2018}}{17^{2018}}\right)^{2017}=\left(1+\left(\frac{16}{17}\right)^{2018}\right)^{2017}\)
Ta có: \(0< \frac{16}{17}< 1\)
=> \(\left(\frac{16}{17}\right)^{2017}>\left(\frac{16}{17}\right)^{2018}\)
=> \(1+\left(\frac{16}{17}\right)^{2017}>1+\left(\frac{16}{17}\right)^{2018}>1\)
=> \(\left(1+\left(\frac{16}{17}\right)^{2017}\right)^{2018}>\left(1+\left(\frac{16}{17}\right)^{2018}\right)^{2017}\)
=> \(\left(17^{2017}+16^{2017}\right)^{2018}>\left(17^{2018}+16^{2018}\right)^{2017}\)
So sánh A và B,biết:
a,A=-15/46 và B=-51/151
b,A=2017^2017+1/2017^2018+1 và B=2017^2016+1/2017^2017+1
Giải giúp mk v
a, Bn quy đồng rồi làm nha
b,Có A=2017^2017+1/2017^2018+1
--> 2017A=2017^2018+2017/2017^2018+1
2017A=2017^2018+1/2017^2018+1 + 2016/2017^2018+1
2017A=1+ 2016/2017^2018+1
Có B=2017^2016+1/2017^2017+1
--> 2017B=2017^2017+2017/2017^2017+1
2017B=2017^2017+1/2017^2017+1 + 2016/2017^2017+1
2017B=1+2016/2017^2017+1
Vì 1+2016/2017^2018+1 < 1+2016/2017^2017+1
nên 2017A<2017B
-->A<B
A.Ta có :
\(A=-\frac{15}{46}>-\frac{15}{45}=-\frac{51}{153}>-\frac{51}{151}=B\)
\(\Rightarrow A>B\)
Câu b, giống bạn Kelly Gaming TV
So sánh hai phân số A=\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)và B=\(\frac{2015+2016+2017}{2016+2017+2018}\)
Các bn giải giúp mk nha ! Mk cần gấp ! Thanks nhiều. ^-^
B = \(\frac{2015+2016+2017}{2016+2017+2018}=\frac{2016.3}{2017.3}=\frac{2016}{2017}\left(1\right)\)
Mà A = \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}.\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)=> A > B.
Vậy A > B .
Bạn Dont look at me
Bạn nên làm theo bạn ấy
Bạn k đúng cho bạn ấy. Bởi vì bạn ấy làm đúng
Theo mk là vậy
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)\(B=\frac{2015+2016+2017}{6051}\)
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)\(B=\frac{2015}{6051}+\frac{2016}{6051}+\frac{2017}{6051}\)
=> A > B
So sánh
A =\(\frac{10^{2016}+2018}{10^{2017}+2018}\) và B =\(\frac{10^{2017}+2018}{10^{2018}+2018}\)
Các bạn giải rõ giúp mk nhá
Mk cần trc 6 giờ 45 phút nha
\(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}\)
\(=\frac{10^{2017}+2018+18162}{10^{2017}+2018}\)
\(=\frac{10^{2017}+2018}{10^{2017}+2018}+\frac{18162}{10^{2017}+2018}\)
\(=1+\frac{18162}{10^{2017}+2018}\)
\(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)
\(\Rightarrow10B=\frac{10^{2018}+20180}{10^{2018}+2018}\)
\(=\frac{10^{2018}+2018+18162}{10^{2018}+2018}\)
\(=\frac{10^{2018}+2018}{10^{2018}+2018}+\frac{18162}{10^{2018}+2018}\)
\(=1+\frac{18162}{10^{2018}+2018}\)
Ta thấy: \(1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2018}+2018}\)
=> 10A > 10B
=> A > B