Giải hệ phương trình: \(\hept{\begin{cases}x^2+xy+xz=48\\xy+y^2+yz=12\\xz+yz+z^2=84\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}zx+xy=x^2+2\\xy+yz=y^2+3\\yz+xz=z^2+4\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}x+yz=2\\y+xz=2\\z+xy=2\end{cases}}\)
Giải hệ phương trình\(\hept{\begin{cases}xy+yz+xz=x^2+y^2+z^2\\x^2+y^2+z^2=3\end{cases}}\)
\(\hept{\begin{cases}\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}-\frac{z}{\sqrt{2}}\right)^2+\frac{x^2+y^2+z^2}{3}=0\\x^2+y^2+z^2=3\end{cases}}\)
=>\(\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}-\frac{z}{\sqrt{2}}\right)^2=-\frac{3}{2}\) vo lý
=> hệ vô nghiệm
???? Cao Văn Đức !!!!
Bài làm chả có căn cứ J cả?
\(x^2+y^2+z^2=xy+yz+zx\)
\(2\left(x^2+y^2+z^2\right)=2.\left(xy+yz+zx\right)\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(y-z\right)^2\ge0\forall z;y\\\left(z-x\right)^2\ge0\forall z;x\end{cases}}\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x;y;z\)
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\Leftrightarrow x=y=z\Leftrightarrow x^2=y^2=z^2\)
Ta có: \(x^2+y^2+z^2=3\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x^2=y^2=z^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}x^2+y^2+z^2=1\\xy+yz+xz=1\end{cases}}\)
\(x^2+y^2+z^2=xy+yz+xz=1< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0< =>x=y=z=1....\\ .\)
giải hệ phương trình:
\(\hept{\begin{cases}x+y+z=6\\xy+yz-xz=-1\\x^2+y^2+z^2=14\end{cases}}\)
Giải hệ phương trình : \(\hept{\begin{cases}x^2+y^2+z^2=xy+yz+xz\\^{2001}+y^{2001}+z^{2001}=3^{2002}\end{cases}}\)
ta nhân vế đầu cho 2 ta được:
\(2x^2+2y^2+2z^2=2xy+2yz+2zx\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
mà \(\left(x-y\right)^2>=0;\left(y-z\right)^2>=0;\left(z-x\right)^2>=0\)
dấu "=" xảy ra khi và chỉ khi \(x=y=z\)
thế vào 2 ta có \(x^{2001}+x^{2001}+x^{2001}=3^{2002}\Leftrightarrow x^{2002}=3^{2002}\Leftrightarrow x=3\)
Giải hệ phương trình \(\hept{\begin{cases}x^2+y^2+xy=37\\x^2+z^2+xz=28\\y^2+z^2+yz=19\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}x^2+y^2+xy=7\\x^2+z^2+xz=4\\y^2+z^2+yz=1\end{cases}}\)
Giai hệ phương trình:
\(\hept{\begin{cases}xy+xz=x^2+3\\xy+yz=y^2+4\\xz+yz=z^2+5\end{cases}}\)