Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bảo Minh
Xem chi tiết
Phong Bùi
Xem chi tiết
Trần Trần Trần
Xem chi tiết
Bùi Tuấn Hưng
Xem chi tiết
Đỗ Thị Thanh Lương
25 tháng 4 2017 lúc 21:59

 Theo hằng đẳng thức 
\(a^2+b^2=\left(a+b\right)^2-2ab;\) 
\(c^2+d^2=\left(c+d\right)^2-2cd\)    

\(\Rightarrow\)
\(a^2+b^2\)\(a+b\) cùng chẵn, hoặc cùng lẻ; 
\(c^2+d^2\) và \(c+d\)cùng chẵn hoặc cùng lẻ. Kết hợp với 
\(a^2+b^2=c^2+d^2\Rightarrow a+b\) và \(c+d\) cùng chẵn hoặc cùng lẻ
Từ đó \(a+b+c+d\)chẵn, và vì \(a+b+c+d\ge4\)
 nên \(a+b+c+d\) là hợp số.

Thanh Nguyễn Đức
5 tháng 5 2017 lúc 7:36

Xét ( a2 + b2 + c2 + d2 )  - ( a + b + c + d)

        = a(a -1)  + b( b -1) + c( c – 1) + d( d – 1)

Vì a là  số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp

=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2

=> a(a -1)  + b( b -1) + c( c – 1) + d( d – 1) là số chẵn

Lại có a2 + c2 = b2 + d2=>  a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.

Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)

 a + b + c + d là hợp số.

Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + ab + b2 = c2 + cd + d2. Chứng minh a + b + c + d là hợp số. 

Lê Song Phương
Xem chi tiết
Nguyễn Ngọc Anh Minh
19 tháng 10 2023 lúc 15:15

\(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\)

\(\Leftrightarrow ac+bd=\left(b+d\right)^2-\left(a-c\right)^2\)

\(\Leftrightarrow ac+bd=b^2+d^2+2bd-a^2-c^2+2ac\)

\(\Leftrightarrow a^2-c^2=b^2+d^2+ac+bd\) (1)

Ta có

\(\left(ab+cd\right)\left(ad+bc\right)=a^2bd+ab^2c+acd^2+bc^2d=\)

\(=bd\left(a^2+c^2\right)+ac\left(b^2+d^2\right)\) (2)

Thay (1) vào (2)

\(\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2+ac+bd\right)+ac\left(b^2+d^2\right)\)

\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2\right)+bd\left(ac+bd\right)+ac\left(b^2+d^2\right)\)

\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(b^2+d^2\right)\left(ac+bd\right)+bd\left(ac+bd\right)\)

\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(ac+bd\right)\left(b^2+d^2+bd\right)\) (3)

Do \(a>b>c>d\)

\(\Rightarrow\left(a-d\right)\left(b-c\right)>0\Leftrightarrow ab-ac-bd+cd>0\)

\(\Leftrightarrow ab+cd>ac+bd\) (4)

Và 

\(\left(a-b\right)\left(c-d\right)>0\Leftrightarrow ac-ad-bc+bd>0\)

\(\Leftrightarrow ac+bd>ad+bc\) (5)

Từ (4) và (5) \(\Rightarrow ab+cd>ad+bc\) 

Ta có

(3)\(\Leftrightarrow b^2+d^2+bd=\dfrac{\left(ab+cd\right)\left(ad+bc\right)}{\left(ac+bd\right)}\) (6)

Vế trái là số nguyên => vế phải cũng phải là số nguyên

Giả sử ab+cd là số nguyên tố mà \(ab+cd>ac+bd\)

\(\Rightarrow UC\left(ab+cd;ac+bd\right)=1\) => ab+cd không chia hết cho ac+bd

=> để vế phải của (6) là số nguyên \(\Rightarrow ad+bc⋮ac+bd\Rightarrow ad+bc>ac+bd\) Mâu thuẫn với (5) nên giả sử sai => ab+cd không thể là số nguyên tố

Nguyễn thị ngọc hân
18 tháng 10 2023 lúc 11:37

mình là người mới ,cho mình hỏi làm sao để kiếm xu đổi quà

 

Kotori Minami
Xem chi tiết
Nhật Linh
9 tháng 1 2016 lúc 16:21

Theo hằng đẳng thức 
a^2+b^2=(a+b)^2-2ab; 
c^2+d^2=(c+d)^2-2cd. 
Suy ra a^2+b^2 và a+b cùng chẵn, hoặc cùng lẻ; 
c^2+d^2 cùng chẵn hoặc cùng lẻ. Kết hợp với 
a^2+b^2=c^2+d^2 ta suy ra a+b và c+d cùng chẵn, 
hoặc cùng lẻ. Từ đó a+b+c+d chẵn, và vì 
a+b+c+d>=4 nên a+b+c+d là hợp số.

tick cho mk nha

Minh Tâm
Xem chi tiết
Nguyễn Kiều Trang
Xem chi tiết
Xem chi tiết
I - Vy Nguyễn
5 tháng 3 2020 lúc 22:22

Xét:\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)

\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)\left(d^2+d\right)\)

\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)

Ta có: \(a.\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho 2

\( \implies\)\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho 2

Mà \(a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) chia hết cho 2

\( \implies\) \(a+b+c+d\) chia hết cho 2

Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số (đpcm)

Khách vãng lai đã xóa