Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thư
Xem chi tiết
Trịnh Gia Long
Xem chi tiết
Hoàng Nguyễn Văn
4 tháng 12 2019 lúc 18:26

Bạn có thể kiểm tra lại đề o , sai đề rồi

mình tìm thấy 1 số giá trị như x=0,x=13 là snt nha bạn

Khách vãng lai đã xóa
Sooya
Xem chi tiết
Phạm Thu Huyền
Xem chi tiết
Jogu Lacy
Xem chi tiết
ngôi sao tình yêu
Xem chi tiết
Nguyễn Trâm Anh
16 tháng 10 2018 lúc 12:10

Với n chẵn thì n = 2k

\(\Rightarrow16^{2k}-1=256^k-1=\left(256-1\right)\left(256^{k-1}+...\right)\)\(=255\left(256^{k-1}+...\right)=17.15.\left(256^{k-1}+...\right)\)

Chia hết cho 17

Với n lẻ thì n = 2k + 1

\(\Rightarrow16^{2k+1}-1=16\left(16^{2k}-1\right)+15\)không chia hết cho 17

Vậy 16n - 1 chia hết cho 17 khi và chỉ khi n là số chẵn

nguyễn ngọc linh
Xem chi tiết
Akai Haruma
5 tháng 2 lúc 23:28

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

Akai Haruma
5 tháng 2 lúc 23:32

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

OTNV
Xem chi tiết
Akai Haruma
10 tháng 12 2023 lúc 17:00

Lời giải:
Vì $n, n+1$ là hai số tự nhiên liên tiếp nên trong đó sẽ tồn tại 1 số chẵn và 1 số lẻ.

$\Rightarrow n(n+1)\vdots 2$

$\Rightarrow n(n+1)(13n+17)\vdots 2(*)$

Mặt khác:
Nếu $n$ chia hết cho 3 thì $n(n+1)(13n+7)\vdots 3$

Nếu $n$ chia 3 dư $1$: Đặt $n=3k+1$ thì:

$13n+17=13(3k+1)+17=39k+30=3(13k+10)\vdots 3$

$\Rightarrow n(n+10)(13n+17)\vdots 3$

Nếu $n$ chia 3 dư $2$. Đặt $n=3k+2$ thì:

$n+1=3k+3=3(k+1)\vdots 3$

$\Rightarrow n(n+1)(13n+17)\vdots 3$

Vậy $n(n+1)(13n+17)\vdots 3$ với mọi $n$ tự nhiên $(**)$

Từ $(*); (**)\Rightarrow n(n+1)(13n+17)\vdots 6$.

Nguyễn Bá Đô
Xem chi tiết