Mọi người giải hộ em bài HPT
\(\hept{\begin{cases}7y-x-xy=4\\x^2+y^2-8x-4y=16\end{cases}}\)
Giải hpt: \(\hept{\begin{cases}x^4+y^2=\frac{697}{81}\\x^2+y^2+xy-3x-4y+4=0\end{cases}}\)
Dùng delta để chặn
\(pt\left(2\right)\Leftrightarrow x^2+x\left(y-3\right)+y^2-4y+4=0\)
Có \(\Delta=\left(y-3\right)^2-4\left(y^2-4y+4\right)\)
\(=y^2-6y+9-4y^2+16y-16\)
\(=-3y^2+10y-7\)
Pt có nghiệm khi \(\Delta\ge0\Leftrightarrow1\le y\le\frac{7}{3}\)
\(\Rightarrow y^2\le\frac{49}{9}\)
Tương tự , pt (2) được viết lại dưới dạng sau
\(y^2+y\left(x-4\right)+x^2-3x+4=0\)
Có\(\Delta=\left(x-4\right)^2-4\left(x^2-3x+4\right)\)
\(=x^2-8x+16-4x^2+12x-16\)
\(=-3x^2+4x\)
Pt có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow0\le x\le\frac{4}{3}\)
\(\Rightarrow x^4\le\frac{256}{81}\)
\(\Rightarrow x^4+y^2\le\frac{256}{81}+\frac{49}{9}=\frac{697}{81}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)
Thử lại ta thấy ... (hình như vô nghiệm thì phải )
Giải hệ phương trình:
a) \(\hept{\begin{cases}x^4+y^4=\frac{697}{81}\\x^2+y^2+xy-3x-4y+4=0\end{cases}}\)
b) \(\hept{\begin{cases}\left(x^2+y^2\right)\left(x^2-y^2\right)=144\\\sqrt{x^2+y^2}-\sqrt{x^2-y^2}=y\end{cases}}\)
c) \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
Giải các HPT sau:
1) \(\hept{\begin{cases}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
2) \(\hept{\begin{cases}x^2+1+y\left(y+x\right)=4y\\\left(x^2+1\right)\left(y+x-2\right)=y\end{cases}}\)
3) \(\hept{\begin{cases}x^4+y^2=\frac{697}{81}\\x^2+y^2+xy-3x-4y+4=0\end{cases}}\)
p/s: cần được giúp đỡ. Rất GẤP!!! các bn ko cần phải làm hết đâu nha.
3/ \(\hept{\begin{cases}x^4+y^2=\frac{697}{81}\left(1\right)\\x^2+y^2+xy-3x-4y+4=0\left(2\right)\end{cases}}\)
Xét phương trình (2) ta có:
\(x^2+\left(y-3\right)x+y^2-4y+4=0\)
Để PT theo nghiệm x có nghiệm thì
\(\Delta=\left(y-3\right)^2-4.\left(y^2-4y+4\right)\ge0\)
\(\Leftrightarrow-3y^2+10y-7\ge0\)
\(\Leftrightarrow1\le y\le\frac{7}{3}\)
\(\Leftrightarrow1\le y^2\le\frac{49}{9}\)
Tương tự ta có:
\(0\le x\le\frac{4}{3}\)
\(\Leftrightarrow0\le x^4\le\frac{256}{81}\)
Từ đây ta có: \(x^4+y^2\le\frac{256}{81}+\frac{49}{9}=\frac{697}{81}\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)
Thế ngược lại hệ không thỏa mãn. Vậy hệ vô nghiệm
1/ Điều kiện \(\hept{\begin{cases}x\ge1\\y\ge0\end{cases}}\)\(\hept{\begin{cases}xy+x+y-x^2+2y^2=0\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
Xét phương trình đầu ta có
\(xy+x+y-x^2+2y^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(2y-x+1\right)=0\)
\(\Rightarrow x=1+2y\)
Thế vào pt dưới ta được
\(\sqrt{2y}\left(y+1\right)=2y+2\)
\(\Leftrightarrow\left(y+1\right)\left(\sqrt{2y}-2\right)=0\)
Tới đây tự làm tiếp nhé
2/ Ta lấy PT đầu - phương trình sau ta được
x2 + 1 + y(y + x) - 3y - (x2 + 1)(y + x - 2) = 0
<=> (y + x - 3)(y - x2 - 1) = 0
Tới đây làm tiếp nhé
giải hệ phương trình bằng phương pháp thế
\(â,\hept{\begin{cases}3x^2+\left(6-y\right)x^2-2xy=0\\x^2-x+y=-3\end{cases}}\)
\(b,\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
\(c,\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
\(d,\hept{\begin{cases}x\sqrt{y+1}=1\\x^2y=y-1\end{cases}}\)
Dùng cái đầu đi ạ
Giải hpt
\(\hept{\begin{cases}x^2+y^2+xy+1=4y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{cases}}\)
HPT
\(\Leftrightarrow\hept{\begin{cases}\left(x^2+1\right)+y\left(x+y-2\right)=2y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{cases}}\)
y=0 khong phai nghiem cua hpt
\(\Rightarrow\hept{\begin{cases}\left(\frac{x^2}{y}+\frac{1}{y}\right)+\left(x+y-2\right)=2\\\left(\frac{x^2}{y}+\frac{1}{y}\right)\left(x+y-2\right)=1\end{cases}}\)
Dat \(\hept{\begin{cases}\frac{x^2}{y}+\frac{1}{y}=a\\x+y-2=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b=2\\ab=1\end{cases}}\)
Đến đây là ngon
\(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
\(\Leftrightarrow x^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)
\(\Leftrightarrow x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left[\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)\right]\)
\(\Leftrightarrow x^3=6+3\sqrt[2]{9-8}.x\)
\(\Leftrightarrow x^3=6+3x\)
Giải hpt sau : \(\hept{\begin{cases}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{cases}}\)
\(\hept{\begin{cases}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{cases}}\)
<=> \(\hept{\begin{cases}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{\left(2x-2\right)^2}+5\sqrt{\left(y+2\right)^2}=13\end{cases}}\)
<=> \(\hept{\begin{cases}5\left|x-1\right|-3\left|y+2\right|=7\\2\left|2x-2\right|+5\left|y+2\right|=13\end{cases}}\)
<=> \(\hept{\begin{cases}5\left|x-1\right|-3\left|y+2\right|=7\\4\left|x-1\right|+5\left|y+2\right|=13\end{cases}}\)
<=> \(\hept{\begin{cases}\left|x-1\right|=2\\\left|y+2\right|=1\end{cases}}\)
Em tự làm tiếp ( hệ có 4 nghiệm nhé!)
Bài 1: Giải hpt
a) \(\hept{\begin{cases}2x+3y=5\\x-4y=1\end{cases}}\)
b) \(\hept{\begin{cases}x+y=-2\\-2x-3y=9\end{cases}}\)
\(a)\)\(\hept{\begin{cases}2x+3y=5\\x-4y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5-3y}{2}\\x=1+4y\end{cases}\Leftrightarrow}5-3y=2+8y\Leftrightarrow y=\frac{3}{11}}\)
\(\Rightarrow\)\(x=1+4y=1+4.\frac{3}{11}=\frac{23}{11}\)
\(b)\)\(\hept{\begin{cases}x+y=-2\\-2x-3y=9\end{cases}\Leftrightarrow\hept{\begin{cases}-x=y+2\\-x=\frac{9+3y}{2}\end{cases}\Leftrightarrow}2y+4=9+3y\Leftrightarrow y=-5}\)
\(\Rightarrow\)\(x=-y-2=-\left(-5\right)-2=3\)
...
Giải HPT sau : \(\hept{\begin{cases}x^2+3xy=10\\4y^2+xy=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+3xy=10\\x^2+xy+4y^2+3xy=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2y\right)^2=16\\x^2+3xy=10\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+2y=4\Rightarrow x=4-2y\\x^2+3xy=10\end{cases}}\) hoặc \(\hept{\begin{cases}x+2y=-4\Rightarrow x=-4-2y\\x^2+3xy=10\end{cases}}\)
Xong thế x=4-2y hoặc -4-2y vào phương trình x^2 +3xy=10 thành phương trình bậc 2 một ẩn, GPT=> x,y
\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)
GIẢI VÀ BIỆN LUẬN HỆ PHƯƠNG TRÌNH
a\(\hept{\begin{cases}mx+y=1\\m+xy=1\end{cases}}\)b\(\hept{\begin{cases}x-my=3\\mx-4y=m+4\end{cases}}\)
GIÚP EM VỚI MỌI NGƯỜI ƠI
\(b,\hept{\begin{cases}x-my=3\left(1\right)\\mx-4y=m+4\left(2\right)\end{cases}}\)
Từ \(\left(1\right)\Rightarrow x=my+3\)
Thay \(x\)vào \(\left(2\right):\left(m^2-4\right)y=4-2m\left(#\right)\)
- Nếu \(m^2-4=0\Leftrightarrow\left(m-2\right)\left(m+2\right)=0\Leftrightarrow\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)
Xét từng giá trị của m sau:
\(m=2:\left(#\right)0y=0\)(Luôn đúng)Hệ có vô số nghiệm: \(\hept{\begin{cases}x=2y+3\\y\inℝ\end{cases}}\)
\(m=-2\)\(\left(#\right)\Leftrightarrow0y=8\left(vn\right)\)Vậy hệ vô nghiệm
- Nếu \(m\ne\pm2\)ta có: \(\left(#\right)\Leftrightarrow y=\frac{4-2m}{m^2-4}\Leftrightarrow y=-\frac{2}{m+2}\)
Ta tìm được \(x=\frac{m+6}{m+2}\)
Hệ có nghiệm: \(\left(x,y\right)=\left(\frac{m+6}{m+2};\frac{-2}{m+2}\right)\)
Vậy: \(m=2\)thì hệ có vô số nghiệm: \(\hept{\begin{cases}x=2y+3\\y\in R\end{cases}}\)
\(m=-2\)hệ vô nghiệm
\(m\ne\pm2\)hệ có nghiệm duy nhất: \(\left(x,y\right)=\left(\frac{m+6}{m+2};\frac{-2}{m+2}\right)\)
https://olm.vn/hoi-dap/detail/247392111572.html
chịu em mới lớp 7