Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
huynh vo thien kim
Xem chi tiết
Võ Đông Anh Tuấn
27 tháng 11 2016 lúc 11:12

a,S=5+52+53+..........+596

S=(5+52+53+54+55+56)+.............+(591+592+593+594+595+596)

S=5.(1+5+52+53+54+55)+............+591.(1+5+52+53+54+55)

S=5.31.126+..............+591.31.126

S=(5.31+..............+591.31).126 chia hết cho 126(Đpcm)

b,5S=52+53+54+55+...............+597

5S-S=4S=597-5

\(S=\frac{5^{97}-5}{2}\)

Mà 597-5=(54)24.5-5=062524.5-5=....0625.5-5=..........3125-5=.........3120

=>S=.........3120:2

=>S=............0

Vui ghê ta
Xem chi tiết
HND_Boy Vip Excaliber
4 tháng 1 2017 lúc 20:40

giải dài lắm bạn ơi,mik làm câu b thui nhé

S = 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203

S x 3 = ( 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203 ) x 3

Sx 3 = 3 + 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 203 + 3 ^ 204

S x 3 = ( 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203 ) + 3 ^ 204 - 1

S x3 = S + 3 ^ 204 - 1

S x 2 = 3 ^ 204 - 1 ( cũng bớt cả 2 vế đi S )

S = 3 ^ 204 - 1 : 2

S = 3 ^ 4 x 51 - 1 : 2

S = (3^4) ^ 51 - 1 : 2

S = 81 ^ 51 - 1 : 2

Vì 81  ^ 51 luôn có t/c = 1 ( do số có t/c =1 khi nâng lên bất kì lũy thừa nào đều có t/c = 1)

=> 81 ^ 51 - 1 co t/c = 0

=> 81 ^ 51 - 1 : 2 co t/c = 5

Hay S có t/c = 5

Vay S co t/c =5

Ung ho nha

Thiều Lê Đức
Xem chi tiết
Đinh Đức Anh
18 tháng 1 2022 lúc 19:03

mk chịu thôi

mk dốt toán lắm

Phạm Hoàng Nam
18 tháng 1 2022 lúc 23:23

Tôi chịu

Phạm Hoàng Nam
Xem chi tiết
Li phan
Xem chi tiết
la thi thu phuong
13 tháng 7 2015 lúc 20:59

A) D

B)S

C)D

D)S

Tiến Vỹ
Xem chi tiết
Nguyen Van Huong
22 tháng 3 2017 lúc 17:51

1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số

Gọi số phải tìm là A

Ta có A + 4 chia hết cho 5 , 7 , 9

Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315

Do đó A = 315 - 4 = 311

2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100

S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )

S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )

S = 1.30 +...+2^96.30

S = ( 1 +...+2^96 )30

Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15

Hay S chia hết cho 15

b) Vì S cha hết cho 30 nên S chia hết cho 10

Suy ra S có tận cùng là 0

c) S = 2^1 + 2^2 + 2^3 +...+2^100

2S = 2^2 + 2^3 + 2^4 +...+ 2^101

2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )

S = 2^101 - 2^1

S = 2^101 - 2

Hồ Hương Quế
22 tháng 3 2017 lúc 17:51

1. 158

2a. 0 ( doan nha )

b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )

      = 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)

      = 2.15+2^5.15+...+2^97.15

      = 15.(2+2^5+...+2^97) chia het 15

c.2^101-2^1

3. chiu !

Trần Hoàng Việt
5 tháng 11 2017 lúc 9:38

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

ʚßồ Çôйǥ Ąйɦɞ
Xem chi tiết
Lê Hoàng
21 tháng 3 2020 lúc 21:46

\(S=5+5^2+5^3+...+5^{2008}\)

a) Ta có: \(126=5^0+5^3\)

\(5+5^4=5\left(5^0+5^3\right)\text{ }⋮\text{ }126,\text{ }5^2+5^5=5^2\left(5^0+5^3\right)\text{ }⋮\text{ }126,...\)

Áp dụng lần lượt như thế, ta có:

\(\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)+\left(5^8+5^{11}\right)+\left(5^9+5^{12}\right)+...+\left(5^{2005}+5^{2008}\right)\text{ }⋮\text{ }126\)

Còn thiếu \(5^{2006}+5^{2007}\), ta có: \(5^{2006}+5^{2007}=5^{2006}\left(5^0+5^1\right)=5^{2006}\cdot6=2\cdot3\cdot5^{2006}\)

Trong khi đó: \(126=2\cdot3^2\cdot7\)

Ta dễ thấy \(5^{2006}+5^{2007}\) không chia hết cho \(3\cdot7=21\), nên \(5^{2006}+5^{2007}\) không chia hết cho 126.

Từ đó suy ra S không chia hết cho 126.

b) Tất cả các số hạng đều có chữ số tận cùng là 5.

Biểu thức S có \(\left(2008-1\right)+1=2008\) số hạng cộng lại với nhau.

=> S có chữ số tận cùng là 0 (vì số lượng các số hạng cộng lại với nhau là số chẵn)

Khách vãng lai đã xóa
Đặng Doãn Thanh Bình
Xem chi tiết
đoàn nguyên huy
9 tháng 1 2017 lúc 13:54

12 chữ số 0

super xity
Xem chi tiết
Tạ Đức Hoàng Anh
19 tháng 9 2020 lúc 15:12

a) Ta có: \(S=5+5^2+5^3+...+5^{96}\)

        \(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)

    Vì mỗi cặp của đa thức  \(S\)có hai hạng tử nên tổng số cặp là: \(\frac{96}{2}=48\)( cặp )

         \(\Rightarrow\)Đa thức  \(S\)không dư số nào

        \(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)

        \(\Leftrightarrow S=5.\left(5^0+5^3\right)+5^2\left(5^0+5^3\right)+5^3.\left(5^0+5^3\right)+...+5^{93}.\left(5^0+5^3\right)\)

        \(\Leftrightarrow S=5.126+5^2.126+5^3.126+...+5^{93}.126\)

        \(\Leftrightarrow S=\left(5+5^2+5^3+...+5^{93}\right).126⋮126\)

Vậy \(S⋮126\)

Khách vãng lai đã xóa