Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bao Cao Su
Xem chi tiết
Trần Hoàng Uyên Nhi
Xem chi tiết
alibaba nguyễn
14 tháng 1 2017 lúc 9:16

a/ Điều kiện xác định \(\hept{\begin{cases}a^2+a\ne0\\a^2-a\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ne0\\a\ne1\\a\ne-1\end{cases}}}\)

b/ \(M=\frac{a^2-1}{2016+2015a^2}\left(\frac{2015a-2016}{a+a^2}+\frac{2016+2015a}{a^2-a}\right)\)

\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}\left(\frac{2015a-2016}{a\left(a+1\right)}+\frac{2016+2015a}{a\left(a-1\right)}\right)\)

\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}\left(\frac{2015a-2016}{a\left(a+1\right)}+\frac{2016+2015a}{a\left(a-1\right)}\right)\)

\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}.\frac{2\left(2015a^2+2016\right)}{a\left(a+1\right)\left(a-1\right)}\)

\(=\frac{2}{a}=\frac{2}{2016}=\frac{1}{1008}\)

Lufy Nguyễn
Xem chi tiết
❤  Hoa ❤
26 tháng 12 2018 lúc 17:58

\(M=\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a-1}-\frac{2}{a^2-1}\right)\)

\(M=\left(\frac{a}{a-1}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{1}{a-1}-\frac{2}{\left(a+1\right)\left(a-1\right)}\right)\)

\(M=\left(\frac{a^2-1}{a\left(a-1\right)}\right):\left(\frac{a+1-2}{\left(a-1\right)\left(a+1\right)}\right)\)

\(M=\frac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)}:\frac{a-1}{\left(a-1\right)\left(a+1\right)}\)

...... what sai sai s ý ??  

Ái Kiều
Xem chi tiết
MiMi -chan
Xem chi tiết
Nguyễn Huy Tú
18 tháng 5 2021 lúc 16:35

a,Với \(a>0;a\ne1\)

 \(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{\sqrt{a}-1+a-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{a-1}{a+\sqrt{a}}\)

b, Ta có : \(1=\frac{a+\sqrt{a}}{a+\sqrt{a}}\)mà \(a-1=\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\)

\(a+\sqrt{a}=\sqrt{a}\left(\sqrt{a}+1\right)\)vì \(\sqrt{a}-1< \sqrt{a}\)

Vậy \(\frac{a-1}{a+\sqrt{a}}< 1\)hay \(M< 1\)

Khách vãng lai đã xóa
mikazuki kogitsunemaru
Xem chi tiết
Châu Phạm
Xem chi tiết
Nguyễn Hồng Thắm
Xem chi tiết
Nguyễn Hồng Thắm
6 tháng 10 2018 lúc 11:12

Ai giải giúp mình bài 1 với bài 4 trước đi

Xem chi tiết
Huỳnh Quang Sang
11 tháng 12 2020 lúc 19:12

a) \(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)(với \(x\ne\pm2;x\ne-1\))

\(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{-\left(6-5x\right)}{x^2-4}\right):\frac{x+1}{x-2}\)

\(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\right):\frac{x+1}{x-2}\)

\(M=\left(\frac{4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\right):\frac{x+1}{x-2}\)

\(M=\frac{4\left(x-2\right)+2\left(x+2\right)-5x+6}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)

\(M=\frac{4x-8+2x+4-5x+6}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)

\(M=\frac{x+2}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)

\(M=\frac{1}{x-2}:\frac{x+1}{x-2}=\frac{1}{x-2}\cdot\frac{x-2}{x+1}=\frac{1}{x+1}\)

b) Với \(M=\frac{1}{4}\)ta có :

\(M=\frac{1}{x+1}\Rightarrow\frac{1}{4}=\frac{1}{x+1}\)

\(\Rightarrow1\left(x+1\right)=4\Rightarrow x+1=4\Rightarrow x=3\)

Vậy x = 3

Khách vãng lai đã xóa
Nguyễn Huy Tú
11 tháng 12 2020 lúc 19:51

a, \(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)

\(=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{\left(2-x\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)

\(=\left(\frac{4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)

\(=\frac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x-2}\)

\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x-2}=\frac{1}{x-2}.\frac{x-2}{x+1}=\frac{1}{x+1}\)

b, Ta có : M = 1/4 hay \(\frac{1}{x+1}=\frac{1}{4}\Leftrightarrow4=x+1\Leftrightarrow x=3\)

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
11 tháng 12 2020 lúc 19:54

a, \(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)

\(=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{\left(2-x\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)

\(=\left(\frac{4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)

\(=\frac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x-2}\)

\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x-2}=\frac{1}{x-2}.\frac{x-2}{x+1}=\frac{1}{x+1}\)

b, Với M = 1/4 ta có : 

\(M=\frac{1}{x+1}=\frac{1}{4}\)

\(\Leftrightarrow x+1=4\Leftrightarrow x=3\)

Khách vãng lai đã xóa