Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
CHẠY ĐI CHỜ CHI
Xem chi tiết
Phước Lộc
2 tháng 4 2019 lúc 21:03

Dễ thôi bạn à

\(A=\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+...+\frac{2500}{49.51}\)

\(A=\frac{1.3+1}{1.3}+\frac{3.5+1}{3.5}+\frac{5.7+1}{5.7}+...+\frac{49.50+1}{49.51}\)

\(A=\frac{1.3}{1.3}+\frac{1}{1.3}+\frac{3.5}{3.5}+\frac{1}{3.5}+\frac{5.7}{5.7}+\frac{1}{5.7}+...+\frac{49.51}{49.51}+\frac{1}{49.51}\)

\(A=1+\frac{1}{1.3}+1+\frac{1}{3.5}+1+\frac{1}{5.7}+...+1+\frac{1}{49.51}\) (có: (51 - 3) : 2 + 1 = 25 chữ số 1)

\(A=25+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(A=25+\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{49}-\frac{1}{51}\right)\)

\(A=25+\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=25+\frac{1}{2}.\left(1-\frac{1}{51}\right)\)

\(A=25+\frac{1}{2}.\frac{50}{51}\)

\(A=25+\frac{25}{51}\)

\(A=\frac{1300}{51}\)

CHẠY ĐI CHỜ CHI
2 tháng 4 2019 lúc 21:04

thank you

CHẠY ĐI CHỜ CHI
2 tháng 4 2019 lúc 21:04

chủ yếu đăng  cho vui

Phong Vũ
Xem chi tiết
Đặng Viết Thái
24 tháng 3 2019 lúc 19:09

Ta có:

\(S=\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+........+\frac{2500}{49.51}\)

Lê Minh Đức
Xem chi tiết
Đào Đức Mạnh
6 tháng 8 2015 lúc 16:06

\(\frac{3}{1x3}+\frac{3}{3x5}+...+\frac{3}{49x51}=\frac{3}{2}\left(\frac{2}{1x3}+\frac{2}{3x5}+...+\frac{2}{49x51}\right)=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)

sad
Xem chi tiết
sad
Xem chi tiết
ninhquanganh
Xem chi tiết
Đức Phạm
6 tháng 7 2017 lúc 20:30

Đặt \(S=\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+...+\frac{3}{49\cdot51}\)

\(S=\frac{3}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)

\(S=\frac{3}{2}\cdot\left(1-\frac{1}{51}\right)\)

\(\Rightarrow S=\frac{3}{2}\cdot\frac{50}{51}=\frac{3\cdot50}{2\cdot51}=\frac{150}{102}=\frac{25}{17}\)

Nguyen Manh Hien
Xem chi tiết

A = \(\dfrac{4}{1\times3}\) - \(\dfrac{8}{3\times5}\) + \(\dfrac{12}{5\times7}\) - \(\dfrac{16}{7\times9}\) + \(\dfrac{20}{9\times11}\) - \(\dfrac{24}{11\times13}\)

A = ( \(\dfrac{1}{1}+\dfrac{1}{3}\)) - ( \(\dfrac{1}{3}\) + \(\dfrac{1}{5}\)) + (\(\dfrac{1}{5}\)\(\dfrac{1}{7}\)) - ( \(\dfrac{1}{7}\) + \(\dfrac{1}{9}\)) +( \(\dfrac{1}{9}\)\(\dfrac{1}{11}\)) - (\(\dfrac{1}{11}\)+\(\dfrac{1}{13}\))

A = \(\dfrac{1}{1}+\dfrac{1}{3}\) - \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{7}\) - \(\dfrac{1}{7}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{11}\) - \(\dfrac{1}{13}\)

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{13}\)

A = \(\dfrac{12}{13}\)

Hoàng Xuân Nhật Huy
23 tháng 10 lúc 19:52

Om op

Miss_Mia
23 tháng 10 lúc 20:27

uyuuuuuuuuuuuuu

ĐẶNG THỊ VIỆT HÀ
Xem chi tiết
Cao Ngọc Phương Trang
18 tháng 3 2019 lúc 20:47

A=1/6+1/12+1/20+1/30+1/42+1/56+1/72

A=1/2*3+1/3*4+1/4*5+1/5*6+1/6*7+1/7*8+1/8*9

A=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9

A=1/2-1/9

Câu B tương tự nha bạn :333

Pham Ngoc Khương
Xem chi tiết