Tứ giác ABCD .Đg thẳng đi Avà //vs BC ,cắt BD ở E .đg thẳng đi quaB và //vs AD ở G b,EG//DC b, giả sử AB//CD .CM :AB2=EG. DC
Cho tứ giác ABCD. Đường thẳng qua A và //với BC cắt BD ở E, Đường thẳng qua B và// với AD cắt AC ở G. Cm EG//FH
Guiusp mk vs mk cần gấp
Ủa từ từ?? FH làm gì có ở bài??? thôi theo hình thì mình thấy EG // DC nên mình chứng minh EG // DC nha.
Bài làm
Gọi O là giao điểm của AC và BD
Ta có: AE // BC => \(\frac{OE}{OB}=\frac{OA}{OC}\) (1)
Lại có: BG // AD => \(\frac{OB}{OD}=\frac{OG}{OA}\) (2)
Nhân (1) vào (2) ta được: \(\frac{OE}{OB}\cdot\frac{OB}{OD}=\frac{OA}{OC}\cdot\frac{OG}{OA}\Rightarrow\frac{OE}{OD}=\frac{OG}{OC}\)
Theo định lí Talet đảo => EG // DC
Cho tứ giác ABCD. Đường thẳng đi qua A và song song với BC cắt BD ở E. Đường thẳng đi qua B và song song với AD cắt AC ở G.
a) Chứng minh rằng EG song song với DC
b) Giả sử AB song song với CD. Chứng minh rằng AB2 = EG.DC
cho tứ giác ABCD.Đường thẳng đi qua A và song song với BC cắt BD ở E. Đường thẳng đi qua B và song song với AD cắt AC ở G
a)Chứng minh EG song song với DC
b)giả sử AB song song với CD. Chứng minh AB^2=EG.DC
Cho tứ giác ABCD,O là giao điểm của 2 đường chéo AC và BD.Đường thằng song song với BC qua O,cắt AB ở E và đường thẳng song song với CD qua O,cắt AD ở F
a,CMR: Đường thẳng EFsong song với đg chéo BD
b,Từ O vẽ các dduong thẳng song song với AB và AD,cắt BC và DC tại G và H.CMRL CG.DH=BG.CH
cho hbh ABCD qua C kẻ đg thẳng song song BD cắt AB ở E cắt AD ở F
a) tứ giác BECD là hình gì? vì sao
b) C/m 3 đg thẳng AC, BF, DE đồng quy( cùng đi qua 1 điểm )
Mn giúp mk nha <3
a) Tứ giác BECD có: BD // CE (gt) và BE // CD (do AB // CD)
\(\Rightarrow\)BECD là hình bình hành
b) ABCD là hbh \(\Rightarrow\)AB = CD ; AD = BC (1)
BECD là hbh \(\Rightarrow\)BE = CD ; CE = BD (2)
Tứ giác BCFD có CF // BD (gt) ; DF // BC ( do AD // BC)
\(\Rightarrow\)BCFD là hbh \(\Rightarrow\)FD = BC ; FC = DB (3)
Từ (1) ; (2) và (3) \(\Rightarrow\)DA = DF; CF = CE; BE = BA
hay AC; FB; ED là 3 đường trung tuyến của \(\Delta\)AEF
\(\Rightarrow\)AC; BF; DE đồng quy
1.Cho tứ giác ABCD. Đường thẳng đi qua A và song song với BC cắt BD ở E. Đường thẳng đi qua B và song song với AD cắt AC ở G.
a) CMR: EG//BC
b) Giả sử AB//CD. CMR:AB2 =EG . DC
2.Cho tứ giác ABCD ; AC vuông góc BD. Gọi các điểm E; F; G; H theo thứ tự chia trong các cạnh AB; BC; CD; DA theo tỉ số 1:2. CM: EG=FH và EG vuông góc với FH.
Cho hình vuông ABCD. Lấy điểm E thuộc cạnh BC, Với E ko trùng B và E ko trùng C. Vẽ EF vuông góc với AE, Với F thuộc CD. Đường thẳng AF cắt đg thẳng BC tại G. Vẽ đg thẳng a đi qua điểm A và Vuông góc với AE, đg thẳng a cắt đg thẳng DE tại điểm H.
1/ chứng minh AE/AF = CD/DE
2/ chứng minh rằng tứ giác AEGH là tứ giác nội tiếp
3/ gọi b là tiếp tuyến của đg tròn ngoại tiếp tam giác AHE tại E, biết b cắt đg trung trực của đoạn EG tại K. Chứng minh KG là tiếp tuyến của đg tròn ngoại tiếp tam giác AHE
chỉnh lại câu 1 tí:
1)
+ Xét tứ giác AEFD : ADF +AEF = 90 +90 = 180
Suy ra: Tứ giác AEFD nội tiếp được đường tròn
Suy ra: EAF = EDF hay EAF = EDC
+ Xét tgAEF và tg EDC : AEF = ECD = 90 VÀ EAF = EDC
Suy ra: tgAEF ~ tgDCE => .AE /AF = CD/DE
2.
Tứ giác AEFD nội tiếp được đường tròn
=> EAF = EDF mặt khác EAF = EDC mặt khác : EAF + HAG = 90 VÀ EDC + HEG =90
suy ra: HAG = HEG suy ra tứ giác AEGH nội tiếp được đường tròn => HGE = 90
Vì HGE = HAE = 90 ,suy ra đường tròn này có tâm O là trung điểm của AE.
3.
Đường tròn ngoại tiếp tam giác AHE chính là đường tròn (O).
+ Xét tam giác HGE : và OH = OE = 1/2. HE => OH = OE = OG.
+ Xét tg OEK và tg OGK :
OE = OG ; OK chung ;EK = GK( Vì K thuộc đường trung trực của đoạn thẳng EG)
Suy ra tgOEK =tg OGK (c – c – c) => KGO = KEO = 90 độ
Suy ra: KG vuông góc với OG, vậy KG là tiếp tuyến của đường tròn ngoại tiếp tam giác HAE.(đpcm).
Cho tam giác của góc B cắt AC ở D ,qua A kẻ đg thẳng // vs BD đg này cắt đg thẳng BC tại E .CMR góc BAE = BEA
bài 1: Cho hình thang abcd, điểm e thuộc cạnh bên bc.Vẽ đường thẳng qua c và song song với ae cắt ad ở k. cmr bk//de
bài 2:cho tứ giác abcd , đường thẳng qua a // bc cắt bd ở e . đường thẳng qua b và // ad ở g
a)cm eg//dc
b) giả sử ab//cd. cm ab2=eg.dc