CMR không tồn tại các số tự nhiên x,y thỏa mãn:
x4 + y3 + 4 =0
Helpppp
chứng minh rằng không tồn tại các số tự nhiên x;y;z thỏa mãn 3^x-2^y-2015^z=85
Tồn tại hay không các số tự nhiên x, y, z thỏa mãn:
|x - 3y| + |y - 5z| + |z - 7x| = 9^x + 11^y + 13^z
Giả sử tồn tại các số tự nhiên x,y,z thỏa mãn đề bài.
Ta có tính chất sau: với các số nguyên a,b,c bất kì, thì hai tổng a+b+c và |a|+|b|+|c| luôn có cùng tính chẵn lẻ.
Do đó, \(\left|x-3y\right|+\left|y-5z\right|+\left|z-7x\right|\) luôn có cùng tính chẵn lẻ với \(x-3y+y-5z+z-7x\)
Mà \(x-3y+y-5z+z-7x=-6x-2y-4z=2.\left(-3x-y-2z\right)\) luôn chẵn với mọi số tự nhiên x,y,z
=>\(\) \(\left|x-3y\right|+\left|y-5z\right|+\left|z-7x\right|\) luôn chẵn
Theo giả thiết:
\(\left|x-3y\right|+\left|y-5z\right|+\left|z-7x\right|=9^{x}+11^{y}+13^{z}\)
Do vế trái chẵn theo chứng minh trên, ta suy ra \(9^{x}+11^{y}+13^{z}\) cũng là số chẵn (1).
Mà 9, 11, 13 là các số tự nhiên lẻ, nên \(9^{x};11^{y};13^{z}\) cũng là các số tự nhiên lẻ
=>\(9^{x}+11^{y}+13^{z}\) có kết quả là 1 số lẻ (mâu thuẫn với (1))
Vậy điều giả sử là sai, hay ko tồn tại các số tự nhiên x,y,z thỏa mãn yêu cầu
Đề bài:
Tồn tại hay không các số tự nhiên \(x , y , z\) sao cho
\(\mid x - 3 y \mid + \mid y - 5 z \mid + \mid z - 7 x \mid = 9^{x} + 11^{y} + 13^{z}\)
Phân tích:\(x , y , z \in \mathbb{N}\) (số tự nhiên, tức là \(0 , 1 , 2 , 3 , \ldots\)).Vế trái là tổng các giá trị tuyệt đối, mỗi giá trị tuyệt đối có giá trị không âm và tương đối nhỏ nếu \(x , y , z\) nhỏ.Vế phải là tổng các số mũ với cơ số lớn (9, 11, 13) và lũy thừa theo \(x , y , z\), sẽ tăng rất nhanh khi \(x , y , z\)tăng.Bước 1: So sánh quy mô 2 vếVế trái:\(\mid x - 3 y \mid + \mid y - 5 z \mid + \mid z - 7 x \mid \leq \mid x \mid + 3 \mid y \mid + \mid y \mid + 5 \mid z \mid + \mid z \mid + 7 \mid x \mid = 8 \mid x \mid + 4 \mid y \mid + 6 \mid z \mid\)
Tức là vế trái lớn nhất cũng chỉ là một số bậc nhất theo \(x , y , z\).
Vế phải:\(9^{x} + 11^{y} + 13^{z}\)
Là hàm số mũ tăng cực nhanh khi \(x , y , z\) tăng.
Bước 2: Kiểm tra trường hợp nhỏThử với \(x = y = z = 0\):
\(\mid 0 - 0 \mid + \mid 0 - 0 \mid + \mid 0 - 0 \mid = 0\)\(9^{0} + 11^{0} + 13^{0} = 1 + 1 + 1 = 3\)
Không thỏa.
Thử \(x = y = z = 1\):
\(\mid 1 - 3 \mid + \mid 1 - 5 \mid + \mid 1 - 7 \mid = 2 + 4 + 6 = 12\)\(9^{1} + 11^{1} + 13^{1} = 9 + 11 + 13 = 33\)
Không thỏa.
Thử \(x = y = z = 2\):
Vế trái:
\(\mid 2 - 6 \mid + \mid 2 - 10 \mid + \mid 2 - 14 \mid = 4 + 8 + 12 = 24\)
Vế phải:
\(9^{2} + 11^{2} + 13^{2} = 81 + 121 + 169 = 371\)
Không thỏa.
Bước 3: Nhận xétVế phải tăng nhanh hơn vế trái rất nhiều.Vì vế trái là hàm tuyến tính (hoặc độ lớn nhất bậc 1), còn vế phải là hàm mũ, nên với \(x , y , z\) lớn, vế phải rất lớn và vế trái rất nhỏ so với vế phải.Bước 4: Trường hợp vế phải nhỏ nhấtĐể vế phải nhỏ nhất, cần \(x = y = z = 0\) (hoặc giá trị nhỏ nhất). Với các giá trị nhỏ đã thử thì không thỏa.
Kết luận:Không tồn tại các số tự nhiên \(x , y , z\) để
\(\mid x - 3 y \mid + \mid y - 5 z \mid + \mid z - 7 x \mid = 9^{x} + 11^{y} + 13^{z}\)
cmr không tồn tại các số nguyên x,y,z thỏa mãn x^3+y^3+z^3=x+y+z+2009
Cứng minh rằng không tồn tại các số tự nhiên x, y, z thỏa mãn 19x + 5y + 1980 x z = 1975430 + 2014
Chứng minh rằng không tồn tại các số tự nhiên x, y, z thỏa mãn : 19x + 5y + 1980.z = 1975430 + 2004
Ta có: 1975^430 có chữ tận cùng bằng 5; suy ra 1975^430+2004 có chữ số tận cùng bằng 9.
Mặt khác: 1980*z tận cùng bằng 0với mọi z . Giả sử tồn tại các số tự nhiên x;y;z thỏa mãn biểu thức đã cho thì 19^x+5^y phải có chữ số tận cùng bằng 9 (1)
Số 19^x chỉ tận cùng bằng 1 hoặc 9 với mọi x; 5^y có chữ số tận cùng bằng 1(y=0) hoặc 5
Nếu 19^x tận cùng bằng 1 thì theo (1) 5^y tận cùng bằng 8 ( vô lý)
Nếu 19^x tận cùng bằng 9 thì theo (1) 5^y tận cùng bằng 0 ( vô lý)
Vậy không tồn tai các số tự nhiên x;y;z để 19^x+5^y+1980*z= 1975^430+2004
cách 2
thành 1980 * z, và xét cả th số tự nhiên là 0), không biết bạn có sửa lại không
Tôi chẳng đăng ký bản quyền làm gì nhưng làm thế là rất xấu
---------------
Với tôi số tự nhiên là > 0. Nếu bạn có cả số 0 thì cũng được
19^x + 5^y + 1980 * z= 1975^430 + 2004 ♦
---
19^x chỉ tận cùng là 1 hoặc 9: 9^0 = 1, 9*9 = 8(1), 1*9 = 9
5^y chỉ tận cùng là 1 hoặc 5: 5^0 = 1, 5^n tận cùng là 5 với n ≥ 1
=> VT chỉ tận cùng là 0, 2, 4 hoặc 6
tương tự có VP tận cùng là 9
=> không tồn tại x, y, z sao cho tm ♦
----------
Nếu đề bài là + 1980^z thì VT chỉ tận cùng là 0, 1, 2, 3, 4, 5, 6, 7 và ta cũng có kết luận tương tự
Chứng minh rằng không tồn tại các số tự nhiên x, y, z thỏa mãn: 3x - 2y - 2015z = 85
CMR: Không tồn tại 2 sô tự nhiên x và y sao cho x2 + y và x+ y 2 là số chính phương ^^
Chứng minh : Không tồn tại số tự nhiên x,y,z thỏa mãn
19x+5y+1980zz=1975430+2004
do đề ra cm .... nên chắc chắc điều đó đúng ok
_Chứng minh rằng không tồn tại số tự nhiên x và y khác 0 thỏa mãn x^2 + y và x+y^2 là số chính phương