Tam giác ABC có A=90. Gọi D, E là các đ của AB, CD, E không trùng với các đỉnh của tg. Cm:
BE^2+CD^2=BC^2+DE^2
cho tam giác abc vuông tại a gọi d va e lần lượt là các điểm trên 2 cạnh ab và ac( d,e không trùng với đỉnh của tam giác) cmr: be^2+CD^2=BC^2+De^2
Ap dụng định lý PYTAGO vào mỗi tam giác có trong hình , ta có:
AB^2+AE^2 =BE^2 AB^2+AC^2=BC^2
AD^2+AC^2=DC^2 AD^2+AE^2=DE^2
Do AB^2+AE^2+AD^2+AC^2=AB^2+AC^2+AD^2+AE^2
Nên BE^2+DC^2=BC^2+DE^2( đpcm)
Làm ơn giúp tớ với ạ!!
Tớ đang cần gấp mai nộp cô
Cho tam giác ABC vuông tại A. Gọi D và E lần lượt là các điểm trên 2 cạnh AB và AC (D,E k trùng với đỉnh của tam giác). Chứng minh BE^2 + CD^2 = BC^2 + DE^2
Hack não quá TvT
E vẽ hình nha
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
Áp dụng định lý Py-ta-go vào tam giác ADE vuông tại A ta được:
\(AD^2+AE^2=DE^2\)
Áp dụng định lý Py-ta-go vào tam giác ABE vuông tại A ta được:
\(AB^2+AE^2=BE^2\)
Áp dụng định lý Py-ta-go vào tam giác \(ADC\)vuông tại A ta được:
\(AD^2+AC^2=DC^2\)
\(\Rightarrow BE^2+CD^2=AB^2+AE^2+AD^2+AC^2\)
\(\Rightarrow BC^2+DE^2=AB^2+AC^2+AD^2+AE^2\)
làm nốt nha = nhau r đó
Cho hình thang ABCD có góc A=D=90 độ, BC=AB+CD. Gọi O là trung điểm của AD, trên BC lấy điểm E sao cho BE=AB.
a, c/m các tam giác AEC và BOC vuông
b, AD2=4AB.CD
c, gọi I và H lần lượt là giao điểm của OC với DE, OB với AE. Tính SOIEH biết AB=9,CD=4.
Hình thang ABCD(AB//CD) có AB=a, BC=b, CD=c, AD=d. các tia phân giác góc A và D cắt nhau tại E. các tia phân giác góc B và góc C cắt nhau tại F. gọi M, N là trung điểm của AD, BC. a. Chứng minh tam giác AED vuông. b. Chứng minh rằng nếu E trùng với F thì a+b=c+d.
Bài 1: Cho ABC cân tại A có A <90 độ Vẽ BE ⊥AC tại E và CD ⊥ AB tại D. a) Chứng minh BC=CD và tam giác ADE cân tại A. b) Gọi H là giao điểm của BE và CD. Chứng minh AH là tia phân giác của BAC c) Chimg minh DE//BC. d) Gọi M là trung điểm cạnh BC. Chứng minh ba điểm A,H,M thẳng hàng.Bài 2: Cho ABC vuông tại B. AD là tin phân giác của BAC (D ∈ BC).Kẻ DI ⊥ AC(I ∈ AC) a) Chứng minh tam giác ABD=tam giác AID b) So sánh DB và DC. c) Từ C kẻ đường thẳng vuông góc với AD, cắt AD tại K. Hai đường thẳng CK và AB cắt nhau tại E. Chứng minh K là trung điểm của CE và tam giác AEC cân d) Chứng minh BI // EC. e) Chứng minh ba điểm E. D. I thẳng hàng BÀI 3. Cho tam giác ABC cân tại A. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho DM – BM a. Chứng minh tam giác BMC = tam giác DMA. Suy ra AD//BC b. Chứng minh tam giác ACD là tam giác cân c. Trên tia đối của tia CA lấy điểm E sao cho CA = CE. Chứng minh DC đi qua trung điểm I của BE Bài 4. Cho tam giác ABC cân tại A, đường phân giác AH a) Chứng minh tam giác ABH bằng tam giác ACH b Chứng minh AH là đường trung tuyến ABC. Bài 5. Cho tam giác .07C cân tại A có ABC = 70. Kẻ BD ⊥C(D∈AC), C⊥(E∈AB) và BD, CE cắt nhau tại H. a) Tính số do các góc còn lại của tam giác ABC. b) Chứng minh BD = CE c) Chứng minh tia AH là tia phân giác của góc BAC .
Cho tam giác ABC có AB = BC. Lấy các điểm D và E sao cho AD = DE. Gọi K là giao điểm của BE và CD. Chứng minh rằng:
a. BE = CD
b. tam giác KBD = tam giác KCE
Cho tam giác ABC có AB = BC. Lấy các điểm D và E sao cho AD = DE. Gọi K là giao điểm của BE và CD. Chứng minh rằng:
a. BE = CD
b. tam giác KBD = tam giác KCE
Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó
Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E
a)CMR: CD vuông góc với AB , BE vuông góc với AC
b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BC
Bài 3:Cho hình thang ABCD , AB//CD, AB<CD , có góc C=góc D=60 độ , CD=2AD . Chứng minh 4 điểm A, B, C, D cùng thuộc 1 đường tròn. Tính diện tích đường tròn đó biết CD=4cm
Bài 4:Cho tam giác ABC vuông tại A. Trên AB, AC lần lượt lấy các điểm D, E . Gọi M, N, P, Q lần lượt là trung điểm của DE , EB, BC, CD. Chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn
@ Trần Ngọc Huyền @ Em lần sau nhớ chia bài ra đăng nhiều lần nhé! .
Đồng ý với cô Nguyễn Thị Linh Chi
Đăng nhiều thế mới nhìn đã choáng
Bài 1:Cho tam giác ABC vuông tại A.Kẻ AH vuông góc BC.Trên cạnh huyền BC lấy điểm D sao cho BD=AB,trên cạnh AC lấy điểm E sao cho AE=AH.Chứng minh rằng:
a) DE vuông góc AC
b) BD + AH > AB + AC
Bài 2:Cho tam giác ABC,có góc A lớn hơn hoặc bằng 90 độ.Trên cạnh AB,AC lấy điểm M và N sao cho không trùng với các đỉnh của tam giác.C/minh rằng BC>MN
Ta có:
AB=AD
=> tam giác BDA cân tại B
=> \(\widehat{BAD}=\widehat{BDA}\)(1)
Ta lại có: \(\widehat{BDA}+\widehat{HAD}=90^o,\widehat{BAD}+\widehat{DAE}=90^o\)(2)
Từ (1) và (2) ta suy ra: \(\widehat{HAD}=\widehat{DAE}\)
Xét tam giác HAD và tam giác EAD có:
\(\widehat{HAD}=\widehat{DAE}\)( chứng minh trên)
AH=AE (gt)
AD chung
Suy ra tam giác HAD và tam giác EAD
=> \(\widehat{AHD}=\widehat{ADE}\)
như vậy DE vuông AC
b) Ta có: BD+AH =BA+AE < BA+AC vì (AH=AE, BD=AB, E<AC)
Em xem lại đề bài nhé