cho x,y,z khác 0 và \(^{x^{2013}+y^{2016}+z^{2019}=2019^{2021}}\)
Tìm x,y,z.
Tìm các số x,y và z sao cho x^2013+y^2016+z^2019=2018^2021 vào đây thì kết bạn nha
Tìm các số nguyên x,y,z thỏa mãn : x^2013 + y^2016 + z^2019 = 2018^2021
\(Cho TLT:\dfrac{x+y}{x-y}=\dfrac{x+z}{x-z}(x khác cộng trừ z, z khác 0, x khác 0) Tính M=\dfrac{2019(y)^{2}+2020yz+2021(z)^{2}}{{2020(y)^{2}+2021yz+2022(z)^{2}} \)
cho x,y,z thỏa mãn : x+y+z=1/2 ; 1/y^2+1/z^2+1/xyz=4 ; 1/x+1/y+1/z>0. tính Q = (x^2019+z^2019)+(y^2017+z^2017)(x^2021+y^2021)
Tìm các số nguyên x,y,z thỏa mãn :
x^2013+y^2016+z^2019=2018^2021
"^" là mũ lũy thừa
MÌNH CẦN GẤP
Cho 3 số x,y,z khác 0 đồng thời thỏa mãn \(x+y+z=\frac{1}{2},\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\)
Tính giá trị biểu thức Q=\(\left(y^{2017}+z^{2017}\right)\left(z^{2019}+x^{2019}\right)\left(x^{2021}+y^{2021}\right)\)
Với x,y,z thoả mãn x + y = z = 3xyz và x + y + z khác 0
Tính A = \(\frac{x^{2019}+y^{2019}+z^{2019}}{\left(x+y+z\right)^{2019}}\)
cho x^2016 + y^2016 + z^2016 = x^2019 + y^2019 + z^2019 = 1
tính P = (x-1)^2017 + (y-1)^2018 + (z-1)^2019
Giải Phương trình nghiệm nguyên:
\(x^{2013}+y^{2016}+z^{2019}=2021^{2022}\)
Giải hệ phương trình:
\(\hept{\begin{cases}x^2+y^2+z^2=8\\|x^3-y^3|+|y^3-z^3|+|z^3-x^3|=32\sqrt{2}\end{cases}}\)