Cho tam giác ABC có góc B bằng 30 độ và góc C bằng 20 độ. Trên Bc lấy D sao cho BD=AC. Chứng minh tam giác ACD cân
cho tam giác ABC có góc B=30 độ ,góc C=20 độ .trên cạnh BC lấy điểm D sao cho BD=AC .chứng minh rằng :tam giác ACD cân tại D
Bài giải của thầy Xuân Minh (Cam Ranh)
Trên cạnh BC lấy D' sao cho ∆AD'C cân,kẻ D'H vuông góc AC ,D'K vuông góc AB ,có ∆AKD'=∆D'HA=>KD'=HA=1/2AC,,lại có KD'=1/2BD' nên BD'=AC=BD=> D' trùng D=>đpcm
Cho tam giác ABC vuông tại A, có góc C = 60 độ
a/ So sánh các góc của tam giác ABC
b/ Trên tia đối tai AC, lấy E sao cho AC = AE. Chứng minh: BC = BE.
c/ Đường trung trực của AC cắt BC tại N. Chứng minh: N là trung điểm BC.
d/ Trên AB lấy D sao cho góc ACD = 20 độ. Trên tia đối tia CD, lấy K sao cho DK = BC. Chứng minh: tam giác BCK cân.
Bài 1: Cho tam giác ABC cân tại A. BH là đường vuông góc hạ từ B đến AC. Chứng minh rằng BAC = 2CBH ( BAC và CBH là góc nha)
Bài 2: Cho tam giác ABC cân tại A, góc A= 30 độ. Trên các cạnh AB, AC lấy các điểm Q, P tương ứng sao cho góc QPC = 45 độ và PQ = BC. Chứng minh BC = CQ
Bài 3: Cho tam giác ABC cân tại B có góc B= 30 độ. Kẻ đường vuông góc từ B đến AC, cắt AC tại H. Trên BH lấy điểm D sao cho BD = AC. Chứng minh tam giác ADC đều
cho tam giác abc có góc B bằng 70 độ góc C bằng 50 độ trên cạnh ab lấy d sao cho acd bằng 20 chúng minh ac+ad=bc+cd
Bài 1: Cho tam giác ABC đều. Trên tia đối tia BC lấy điểm D, trên tia đối tia CB lấy điểm E sao cho BD=CE=BC
a) C/m: tam giác ACE cân
b) Tính góc DAE
Bài 2: Cho tam giác ABC cân tại A. Trên tia đối tia AC lấy điểm D sao cho AD = AC. C/m tam giác BCD vuông
Bài 3: Cho tam giác ABC cân tại A có góc A= 40 độ. Lấy điểm D khác phía B so với AC thoả mãn góc CAD=60 độ, góc ACD=80 độ. C/m BD vuông góc AC
Cho tam giác ABC cân tại A có góc B = góc C bằng 40 độ. Kẻ phân giác BD ( D thuộc AC). Trên tia AB lấy điểm M sao cho AM = BC. Từ D dựng đường thẳng song song với BC cắt AB tại E.
a) Chứng minh DE = CD
b) Chứng minh BD + AD = BC
c) tính góc AMC
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
cho tam giác ABC vuông cân tại A , D là 1 điểm nằm trong tam giác ABC sao cho góc CBD bằng góc ACD và bằng 30 độ . Chứng minh rằng tam giác ACD cân
Cho tam giác ABC có góc A bằng 80 độ, góc B bằng 60độ a, so sánh các cạnh của tam giác ABC b, trên BC lấy điểm M sao cho BM=BA .Tia phân giác góc B cắt AC tại D .CM: BAD=BMD. c, Tia MD cắt tại BA tại H, CM DHC cân d, Chứng minh BD>AM và tính số đo góc DHC
a: góc C=180-80-60=40 độ
góc A>góc B>góc C
=>BC>AC>AB
b: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
c: Xét ΔDMC và ΔDAH có
góc DMC=góc DAH
DM=DA
góc MDC=góc ADH
=>ΔDMC=ΔDAH
=>DC=DH