Cho hàm số f(x) xác định mọi x thuộc R có tính chất 2015 f(x)+(x-1).f(6-x)=1-x.Tính f(-2014)
Cho hàm số y = f(x) xác định với mọi x thuộc z (x >0) và thỏa mãn f(1)=1, f(a+b)= f(a) +f(b) - 2f(ab).
Tính f(2014) và f(2015)
Cho hàm số y = f(x) xác định với mọi x thuộc z (x >0) và thỏa mãn f(1)=1, f(a+b)= f(a) +f(b) - 2f(ab).
Tính f(2014) và f(2015)
Cho hàm số y = f(x) xác định với mọi x thuộc z (x >0) và thỏa mãn f(1)=1, f(a+b)= f(a) +f(b) - 2f(ab).
Tính f(2014) và f(2015)
cho hàm số f(x) được xác định với mọi x thuộc r,thỏa mãn tính chất f(x)-3f(x+1)=2x^2+1.a)tính f(2).b)xác định công thức hàm số f(x)
Cho hàm số f(x) xác định mọi x thuộc R có tính chất 2015 f(x) (x-1).f(6-x)=1-x.Tính f(-2014)
Cho hàm số y=f(x) xác định với mọi x khác 0. Biết f(1)=1; f(1) : x = 1/x^2 * f(x). Biết f(x1+x2) = f(x1) + f(x2) với x(1) và x(2) khác 0. Tính f(2014/2015)
1.Cho tổng A= 2/2^1 + 2/2^2 +...+ 2015/2^2014. So sánh A với 3.
2. Nếu a+5b chia hết cho 7 thì 10a+b chia hết cho 7.
3. Cho hàm số f(x) xác định với mọi x thuộc R và x khác 0 ta có: f(x) + 2f(1/x) = x^2. Tính f(2).
cho hàm số y = f(x) xác định với mọi x thuộc R . Biết rằng với mọi x ta có: f(x)+ 3.f(1/x) = x^2. tính f(2)
\(f\left(x\right)+3f\left(\frac{1}{x}\right)=x^2\)
Thế \(x=2\)ta được:
\(f\left(2\right)+3f\left(\frac{1}{2}\right)=4\)
Thế \(x=\frac{1}{2}\)ta được:
\(f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\)
Ta có hệ phương trình:
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\3f\left(2\right)+f\left(\frac{1}{2}\right)=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}f\left(2\right)=-\frac{13}{32}\\f\left(\frac{1}{2}\right)=\frac{47}{32}\end{cases}}\)