Tìm x,y,z :
y+z+1/x=x+z=2/y=x+y-3/z=1/x+y+z
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Tìm x, y, z
x3/8= y3/27 = z3/64 và x2+2y2-3z2 = -650
x/ y+z+1 = y/ x+z+2 = z/y+z+3= x+y+z cho x, y, z <>0 thoả y+z+x/x= z+y-y/y= x+y-z/z
Tính B= (1+ x/y). (1+y/z) .(1+z/x)
Tìm x,y,z biết (y+x+1)/x = (x+z+2)/y = (x+z-3)/z = 1/(x+z+y)
Mình tìm được (x+y+1)/x = (x+z+2)/y = (z+y-3)/z = 1/(z+x+y) =6
và x+z+y=1/6
Các bn giúp mình nốt nhé!
Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0)
theo tính chất tỷ lệ thức
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
mik đồng ý với cánh diều tuổi thơ mà câu này cực kì đơn giản.
tick cho mik nhé.
Tìm x, y, z
x3/8= y3/27 = z3/64 và x2+2y2-3z2 = -650
x/ y+z+1 = y/ x+z+2 = z/y+z+3= x+y+z cho x, y, z <>0 thoả y+z+x/x= z+y-y/y= x+y-z/z
Tính B= (1+ x/y). (1+y/z) .(1+z/x)
Tìm x, y, z
x3/8= y3/27 = z3/64 và x2+2y2-3z2 = -650
x/ y+z+1 = y/ x+z+2 = z/y+z+3= x+y+z cho x, y, z <>0 thoả y+z+x/x= z+y-y/y= x+y-z/z
Tính B= (1+ x/y). (1+y/z) .(1+z/x)
tìm x,y,z biết:y+z+1/x=x+z+2/y=x+y-3/z=1/x+y+z
Tìm x;y;z biết (y+z+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)
tìm x,y,z biết y+z+1/x=x+z+2/y=y+x-3/z=1/x+y+z
dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0)
* trước tiên ta xét trường hợp x+y+z = 0 có
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0
* xét x+y+z = 0, tính chất tỉ lệ thức:
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2
=> x+y+z = 1/2 và:
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2
Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2)
Tick đúng cho mink nha!
bạn Nguyễn Quỳnh Trang ơi!
Đề bài cho \(\frac{1}{x+y+z}\)thì có nghĩa là x+y+z\(\ne\)0 rồi bạn không cần phải xét đâu, còn nữa hình như bạn làm sai so với đầu bài rồi.
tìm x,y,z biết:x+y-3/z=y+z+2.x=x+z+1/y=1/x+y+z