Giải hệ pt:
\(\hept{\begin{cases}x^2-xy+y^2=3\\z^2+yz+1=0\end{cases}}\)
1.Giải hệ pt
1)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\\xy+yz+zx=3\\\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}=x\end{cases}}\)
2)\(\hept{\begin{cases}xy+yz+zx=3\\\left(x+y\right)\left(y+z\right)=\sqrt{3}z\left(1+y^2\right)\\\left(y+z\right)\left(z+x\right)=\sqrt{3}x\left(1+z^2\right)\end{cases}}\)
3)\(\hept{\begin{cases}xy+yz+zx=3\\1+x^2\left(y+z\right)+xyz=4y\\1+y^2\left(z+x\right)+xyz=4z\end{cases}}\)
giai hệ pt
\(\hept{\begin{cases}x^2+xy+y^2=3\\z^2+yz+1=0\end{cases}}\)
\(\hept{\begin{cases}x+6\sqrt{xy}-\sqrt{y}=0\\x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}=3\end{cases}}\)
giải hệ pt \(\hept{\begin{cases}x+y+z=0\\xy+yz+xz=-3\\xyz=-2\end{cases}}\)
help me, please!!!!
Học vi-et phương trình bậc 3 chưa bạn. Nếu học rồi thì áp dụng vô là tìm được nghiệm nhé
Giải hệ pt
a\(\hept{\begin{cases}xy+xz=8\\yz+xy=9\\xz+yz=-7\end{cases}}\)
b,\(\hept{\begin{cases}x^2+y^2=2xy\\y^2+z^2=2yz\\z^2+x^2=2xz\end{cases}}\)
Ai làm tích đúng
Ai giỏi toán giải giúp mình mấy hệ phương trình
1.\(\hept{\begin{cases}\left|x-1\right|-\left|y-5\right|=1\\y=5+\left|x-1\right|\end{cases}}\)
2.\(\hept{\begin{cases}2x^3+3yx^2=5\\y^3+6xy^2=7\end{cases}}\)
3.\(\hept{\begin{cases}x-1=\left|2y-1\right|\\y-1=\left|2z-1\right|\\z-1=\left|2x-1\right|\end{cases}}\)
4.\(\hept{\begin{cases}x^2+xy+y^2=7\\y^2+yz+z^2=28\\x^2+xz+z^2=7\end{cases}}\)
5.\(\hept{\begin{cases}\left|x-1\right|+y=0\\x+3y-3=0\end{cases}}\)
\(\hept{\begin{cases}x^2+y^2+xy=3\\xy+3x^2=4\end{cases}}\)
Giải hệ phương trình:
a)\(\hept{\begin{cases}\frac{xy}{x+y}=\frac{8}{3}\\\frac{yz}{y+z}=\frac{12}{5}\\\frac{zx}{z+x}=\frac{24}{7}\end{cases}}\)
b)\(\hept{\begin{cases}\frac{2x^2}{1+x^2}=y\\\frac{2y^2}{1+y^2}=z\\\frac{2z^2}{1+z^2}=x\end{cases}}\)
c)\(\hept{\begin{cases}\frac{xy}{x+y}=2-z\\\frac{yz}{y+z}=2-x\\\frac{zx}{z+x}=2-y\end{cases}}\)
giải hệ phương trình:
a)\(\hept{\begin{cases}x^2+y^2+z^2=8\\xy+yz+xz=4\\x+y+z=4\end{cases}}\)
b)\(\hept{\begin{cases}x^4+x^3y+9y=y^3x+x^2y^2\\xy^3-x^4=7\end{cases}}\).
Giải hệ phương trình: \(\hept{\begin{cases}zx+xy=x^2+2\\xy+yz=y^2+3\\yz+xz=z^2+4\end{cases}}\)
Giải hệ phương trình\(\hept{\begin{cases}xy+yz+xz=x^2+y^2+z^2\\x^2+y^2+z^2=3\end{cases}}\)
\(\hept{\begin{cases}\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}-\frac{z}{\sqrt{2}}\right)^2+\frac{x^2+y^2+z^2}{3}=0\\x^2+y^2+z^2=3\end{cases}}\)
=>\(\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}-\frac{z}{\sqrt{2}}\right)^2=-\frac{3}{2}\) vo lý
=> hệ vô nghiệm
???? Cao Văn Đức !!!!
Bài làm chả có căn cứ J cả?
\(x^2+y^2+z^2=xy+yz+zx\)
\(2\left(x^2+y^2+z^2\right)=2.\left(xy+yz+zx\right)\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(y-z\right)^2\ge0\forall z;y\\\left(z-x\right)^2\ge0\forall z;x\end{cases}}\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x;y;z\)
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\Leftrightarrow x=y=z\Leftrightarrow x^2=y^2=z^2\)
Ta có: \(x^2+y^2+z^2=3\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x^2=y^2=z^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\)