voi moi x, y thuoc R thoa man x^2+y^2=1. TimGTLN cua can3.xy+y^2
cho x,y thuoc R khac 0 thoa man 2x^2 + y^2/4 +1/x^2 = 4. tim gtnn gtln cua A= 2008+xy
cho ham so y=f(x) thoa man dieu kien f(x1+x2)=f(x1)+f(x2) va f(x)-xf(-x)=x+1 voi moi x thuoc R
A CMR M(0,1)thuoc do thi ham so
B Tinh f(2019)
a)Tim cap (x,y) nguyen duong thoa man xy=3(y-x)
b)cho 2 so x,y >0 thoa man x+y = 1
Tim GTNN cua M=(x^2+1/y^2)(y^2+1/x^2)
mình biết làm nhưng dài quá bạn tra trên google là đc
1)Tìm x,y thuoc Z thoa man dong thoi
x^3+y^3=1 x^7+y^7=x^4+y^4
2)Cho A=y^5 - 5y^3 +4y y thuoc Z
CM nếu y ko chia hết 3 thì A chia hết 360
3)Tìm P(x) bậc 4 thỏa mãn
P(-1)=0 , P(x)-P(x-1)=x*(x+1)*(2x+1) voi x thuoc R
tim x,y,z thuoc Zduong thoa man
x^2+y^2+z^2<xy+3y+2z
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
cac ban oi giup minh voi
1.tim a,b thuoc Z,biet:a.(2b-3)=-6
2.cho x,y thuoc Z thoa man x mu 2 +y mu 2 chia het cho 3.chung to x va y chia het cho 3.
voi x,y>0 thoa man x+y<=1, tim gia tri nho nhat cua P=(1/x+1/y){1+x2y2}
\(P=\frac{1}{x}+\frac{1}{y}+xy^2+x^2y=\left(\frac{1}{16x}+xy^2\right)+\left(\frac{1}{16y}+x^2y\right)+\frac{15}{16}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\ge\frac{y}{2}+\frac{x}{2}+\frac{15}{16}.\frac{4}{x+y}\)
\(=\left(\frac{x+y}{2}+\frac{1}{2\left(x+y\right)}\right)+\frac{13}{4\left(x+y\right)}\)
\(\ge1+\frac{13}{4}=\frac{17}{4}\)
Dấu "=" xảy ra <=> x = y = 1/2
1)Tìm x,y thuoc Z thoa man dong thoi
x^3+y^3=1 x^7+y^7=x^4+y^4
2)Cho A=y^5 - 5y^3 +4y y thuoc Z
CM nếu y ko chia hết 3 thì A chia hết 360
3)Tìm P(x) bậc 4 thỏa mãn
P(-1)=0 , P(x)-P(x-1)=x*(x+1)*(2x+1) voi x thuoc R
cho x,y thuoc R thoa man 3x+y =5
chung minh :\(\sqrt{2x+3y+4+xy}\)+\(\sqrt{\left(2x+2\right)y}\) ≤ 5