cho x,y,z>0 va xyz=1 chung minh rang neu x+y+z>1/x+1/y+1/z thi trong 3 so co it nhat 1 so lon hon 1
cho x,y,z la 3 so thuc tuy y thoa man x+y+z=0 va -1< x<1,-1<y<1,-1<z<1.chung minh rang da thuc x^2+y^4+z^6 co gia tri khong lon hon 2
Cho 3 so duong thoa man\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) . Chung minh rang \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)lon hon hoac bang\(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Từ giả thiết : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Rightarrow xy+yz+zx=xyz\)
Ta có : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Vì hai vế luôn dương nên ta bình phương hai vế được :
\(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\ge\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)
Xét \(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\)
\(=\left(x+y+z\right)+\left(xy+yz+zx\right)+2\left(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\right)\)
Xét \(\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)
\(=xyz+\left(x+y+z\right)+2\left(x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
Suy ra : \(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\ge\)
\(\ge x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) (*)
Mà theo bất đẳng thức Bunhiacopxki , ta có :
\(\sqrt{\left(x+yz\right)}.\sqrt{y+zx}\ge\sqrt{xy}+\sqrt{yz.zx}=\sqrt{xy}+z\sqrt{xy}\) (1)
\(\sqrt{y+zx}.\sqrt{z+xy}\ge\sqrt{yz}+x\sqrt{yz}\)(2)
\(\sqrt{z+xy}.\sqrt{x+yz}\ge\sqrt{xz}+y\sqrt{xz}\)(3)
Cộng (1) , (2) và (3) theo vế ta được (*) đúng
Vậy bđt ban đầu được chứng minh.
1. Chung minh rang neu a khong chia het cho 2 va 3 thi a^2 - 1 chia het cho 24
2 . Cmr : a. 101 .102.103.104.....200 chia het cho 1.3.5.....199
b. 201.202.203.204.....600 chia het cho 3^200
3.chung to rang so 1920212223...7980 chia het cho 1980
4. ton tai hay khong cac so x y z thuoc N* sao cho xyz +x=2975 ; xyz + y= 975 ; xyz + z=755.
5 . ban hue chia mot
so cho 36 thi du 24 con khi chia cho 18 thi du 5 chung to rang ban hue da lam sai it nhat mot phep tinh
lam nhanh nha mai minh phai nop roi . minh cam on
Cho x,y,z khac nhau va :1/x+1/y+1/z=1/x+y+z
CMR trong 3 so x,y,z co it nhat 1 cap so doi nhau
CM neu x+y+z=2015 va \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\) thi co it nhat 1 so la 2015
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\Leftrightarrow\frac{1}{x}+\frac{1}{y}=2015-\frac{1}{z}=\frac{z-2015}{2015z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-2015}{2015z}\Leftrightarrow2015z\left(x+y\right)=xy\left(z-2015\right)\)
\(2015z\left(2015-z\right)+\left(2015-z\right)xy=0\Leftrightarrow\left(2015-z\right)\left(2015z+xy\right)=0\)
\(\Leftrightarrow\left(2015-z\right)\left(2015\left(2015-x-y\right)+xy\right)=0\)
\(\Leftrightarrow\left(2015-z\right)\left(2015^2-2015x-2015y+xy\right)=0\)
\(\Leftrightarrow\left(2015-z\right)\left(2015-y\right)\left(2015-x\right)=0\)
vậy trong 3 số sẽ có 1 số là 2015
nguyen thi thu thuy copy ac nhi?con doi tick nua chu!!!du sao cung thong minh nen tuj tick cho :V
cho cac so x,y,z khac 0 va thoa man \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) Chung minh rang x2(y+z)+y2(z+x ) +z2(x+z)+3xyz
ai nnha nhat minh tik dung luon
Cho x y z la cac so huu ti doi mot khac nhau va khac khong thoa man x+1/y=y+1/z=z+1/x Chung minh xyz=1 hoac xyz=-1
cho X+Y+z=2016; 1/x+1/y+1/z=1/2016 .c/m trong ba so x,y,z co it nhat mot so bang 2016
gia su x=a/m. y=b/m (a,b,m la so nguyen, m>0) va x<y. hay chung to rang neu chon z=a+b/2m thi ta co x<z<y