Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Thuy Tien
Xem chi tiết
nguyễn như quỳnh trang
14 tháng 3 2018 lúc 13:42

a=8/9+15/16+24/25+....+2499/2500

a=(1-1/9)+(1-1/16)+(1-1/25)+....+(1-1/2500)

a=1-1/9+1-1/16+1-1/25+....+1-1/2500

a=(1+1+...+1)-(1/9+1/16+1/25+....+1/2500)

Công chúa hoa hồng
Xem chi tiết
Nguyen Thi Hong Nhung
12 tháng 4 2015 lúc 15:15

Bạn vào https://sites.google.com/site/toantieuhocpl/20-tinh-nhanh sẽ có đấy.

nguyễn thanh nga
22 tháng 4 2015 lúc 10:01

=2.4/3^2.3.5/4^2.4.6/5^2.....49.51/50^2

=(2.3.4.....49).(4.5.6.....51)/(3.4.5.....50).(3.4.5.....50)

=2.51/50.3

=17/25

Đặng Thị Sơn
2 tháng 4 2018 lúc 14:56

giỏi hậy

Hoàng Minh Hiếu
Xem chi tiết
J Cũng ĐC
Xem chi tiết
Lê Thúy Hằng
Xem chi tiết
T.Ps
19 tháng 6 2019 lúc 9:07

#)Giải :

\(A=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times...\times\frac{2499}{2500}\)

\(A=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times\frac{3.5}{4.4}\times\frac{4.6}{5.5}\times...\times\frac{49.51}{50.50}\)

\(A=\frac{1\times3\times2\times4\times3\times5\times...\times49\times51}{2\times2\times3\times3\times4\times4\times...\times50\times50}\)

\(A=\frac{1\times51}{2\times50}\)

\(A=\frac{51}{100}\)

trần quốc dũng
19 tháng 6 2019 lúc 9:19

\(A=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times...\times\frac{2499}{2500}\)

     \(=\frac{1\times3}{2\times2}\times\frac{2\times4}{3\times3}\times\frac{3\times5}{4\times4}\times\frac{6\times4}{5\times5}\times...\times\frac{49.51}{50\times50}\)

       \(=\frac{1}{2}\times\frac{51}{50}\)

        \(=\frac{51}{100}\)

Hằng😁😁😁😁
19 tháng 6 2019 lúc 9:20

\(\frac{51}{100}\) nha !

Nguyễn Tiến Đạt
Xem chi tiết
Phùng Minh Quân
8 tháng 3 2018 lúc 7:36

Bạn tham khảo nhé 

Ta có : 

\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\)

\(B=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+\frac{5^2-1}{5^2}+...+\frac{50^2-1}{50^2}\)

\(B=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+\left(1-\frac{1}{5^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)

\(B=\left(1+1+1+1+...+1\right)-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-\frac{1}{5^2}-...-\frac{1}{50^2}\)

\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)

\(A< 1-\frac{1}{50}\)

\(A< \frac{49}{50}\)\(\left(1\right)\)

Lại có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{50}-\frac{1}{51}\)

\(A>\frac{1}{2}-\frac{1}{51}=\frac{49}{102}\)\(\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{49}{102}< A< \frac{49}{50}\)

\(\Leftrightarrow\)\(49-\frac{49}{102}< 49-A< 49-\frac{49}{50}\)

\(\Leftrightarrow\)\(\frac{4949}{102}< B< \frac{2401}{50}\)

\(\Rightarrow\)\(B\notinℤ\)

Vậy B không là số nguyên 

Team 7C
4 tháng 2 2019 lúc 12:03

đúng ko zậy 

Đinh Diệu Châu
9 tháng 5 2020 lúc 20:08

bạn ấy làm đúng rùi đó

Khách vãng lai đã xóa
vuong hien duc
Xem chi tiết
Tiểu thư kim ngưu nữ tín...
Xem chi tiết
Lê Mai Phương
6 tháng 8 2019 lúc 9:36

\(\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\cdot\frac{2499}{2500}\)

=\(\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot\cdot\cdot\cdot\cdot\frac{49\cdot51}{50\cdot50}\)

=rút gọi tử và mẫu

=\(\frac{2}{3}\cdot\frac{50}{51}\)

=\(\frac{100}{153}\)

chuyên toán thcs ( Cool...
6 tháng 8 2019 lúc 9:37

A = 89 .1516 .2425 ....24992500 

 \(A=\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.5}.....\frac{49.51}{50.50}\)

\(A=\frac{2.3.4.....49}{3.4.5.....50}.\frac{4.5.6.....51}{3.4.5....50}\)

\(A=\frac{2}{50}.\frac{51}{3}\)

\(A=\frac{17}{25}\)

Study well 

ρɧươηɠ αηɧ
Xem chi tiết