Cho a,b là các chữ số khác 0. Chưng tỏ ab+ba chia hết 11
a,b là hai chữ số khác 0. chứng tỏ (ab+ba) chia hết cho 11
\(\overline{ab}\) + \(\overline{ba}\) = \(a\times\) 10 + \(b\) + \(b\times\) 10 + \(a\) = \(a\times11\) + \(b\times\)11
\(\overline{ab}\) + \(\overline{ba}\) = (\(a\) + \(b\))\(\times\) 11
Vì 11 ⋮ 11 ⇒ (\(a+b\))\(\times\) 11 ⋮ 11 ⇒ \(\overline{ab}\) + \(\overline{ba}\) ⋮ 11 (đpcm)
ab +ba=a x10 +b +b x10 +a=a x[10+1] + b x[10+1]
=a x 11 + b x 11=[a+b] x11
mà : 11chia hết cho 11 nên 11:11=[a+b]
suy ra : a+b có thể là bất kì số gì khác 0
a,b là hai chữ số khác 0. chứng tỏ (ab+ba) chia hết cho 11
Bởi vì a,b là 2 chữ số khác 0 nên:
ab+ba đặt tính rồi tính ta có
ab Ta có: a+b b+a nên a+b=b+a
+ Ví dụ: cho a=2,b=1
ba Ta có: 21+12=33(chia hết cho 11)
_____
Cho a,b là chữ số khác 0 . chứng tỏ rằng ab + ba chia hết cho 11
ab + ba = 10a + b + 10b + a = (10 + 1)a + (1 + 10)b = 11a + 11b = 11(A + b)
Vậy ab + ba chia hết cho 11
Các bạn giúp tớ làm 2 câu này nhé :
a)Chứng tỏ rằng ab (a+b) chia hết cho 2(a;b thuộc N).
b)Chưng minh rằng ab + ba chia hết cho 11.
b)có vì ab + ba sẽ có kết quả là hai số giống nhau.chỉ có số ab nhỏ hơn 55 sẽ có thể nhìn dõ được điều này.
a ) nếu a và b cùng chắn thì ab(a + b) \(⋮\) 2
nếu a chắn, b lẻ(hoặc a lẻ,b chẵn) thì ab(a +b) \(⋮\)2
nếu a,b cùng lẻ thì ab(a+b) \(⋮\)2
b) ab + ba = 10a + b + 10b + a = 11a + 11 b = 11 ( a + b ) \(⋮\)11
Cho 2 số có 2 chữ số: a là chữ số hàng chục và b là chữ số hàng đơn vị, sẽ được viết là ab. Giả sử a>b
a, em hãy chứng tỏ rằng hiệu ( ab - ba ) luôn luôn chia hết cho 9.
c, chứng tỏ rằng tổng ( ab + ba ) luôn luôn chia hết cho 11. Số ba la số viết ngược lại của số ab
cho 1 số có hai chữ số , A là chữ hàng chục , B là chữ số hàng đơn vị lớn (a lớn hơn b)
a)chứng tỏ ab-ba ko chia hết cho 9?
b)ab+ba luôn chia hết cho 11?
Câu b nha:
ab-ba =10a+b+10b+a=11a+11b
=11(a+b)
vì 11 chia hết cho 11 nên 11(a+b) chia hết cho 11
vậy ab+ba chia hết cho11
a) nếu a hơn b 1 thì ab-ba sẽ không thẻ chia được 9
b) nếu a hơn b 1 thì ab+ba thì sẽ chia được 9
chứng tỏ rằng:
A) Số aaa chia hết cho 37(a khác 0)
B) ab - ba chia hết cho 9
C) nếu ab+ cd chia hết cho11 thì abcd chia hết cho 11
A) 37.3=111, aaa=a.111 nên aaa chia hết cho 37
B)ab= 10a +b, ba=10b+a nên ab-ba =9a-9b=9(a-b) chia hết cho 9
A) 37.3=111, aaa=a.111 nên aaa chia hết cho 37
cho số: 2a5b chia hết cho 2,3 và 5.tìm các chữ số a,b
chứng tỏ ab,ba chia hết cho 11
Cho 2 số có 2 chữ số: a là chữ số hàng chục và b là chữ số hàng đơn vị, sẽ được viết là ab. Giả sử a>b
a, em hãy chứng tỏ rằng hiệu ( ab - ba ) luôn luôn chia hết cho 9.
c, chứng tỏ rằng tổng ( ab + ba ) luôn luôn chia hết cho 11. Số ba la số viết ngược lại của số ab.
c, Ta có ab+ba = 10a + 10b + a + b=11a + 11b
Vậy ab+ba chia hết cho 11