Chứng minh (34-33)/273 chia hết cho 2
Em hãy chứng minh :
a) A = 21 + 22 + 23 + 24 + .............. + 22010 chia hết cho 3 ; và 7 .
b) B = 31 + 32 + 33 + 34 + ............... + 22010 chia hết cho 4 và 13 .
c) C = 51 + 52 + 53 + 54 + ................... + 52010 chia hết cho 6 và 31 .
d) D = 71 + 72 + 73 + 74 + ...................... + 72010 chia hết cho 8 và 57 .
Giải:
a) A = 21 + 22 + 23 + 24 + .............. + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7
=> A \(⋮\)cả 3 và 7
Vây A \(⋮\)cả 3 và 7
b) B = 31 + 32 + 33 + 34 + ............... + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 32 \(⋮\)4
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13
=> B \(⋮\)cả 4 và 13
Vậy B \(⋮\)cả 4 và 13
c) C = 51 + 52 + 53 + 54 + ................... + 52010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 54 \(⋮\)6
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31
=> C \(⋮\)cả 6 và 31
Vậy C \(⋮\)cả 6 và 31
d) D = 71 + 72 + 73 + 74 + ...................... + 72010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 72 \(⋮\)8
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57
=> D \(⋮\)cả 8 và 57
Vậy D \(⋮\)cả 8 và 57
Học tốt!!!
a) Cho abc chia hết 27 . Chứng minh bca chia hết 27.
b) Chứng tỏ 31/2 x 32/2 x 33/2 x ... x 60/2 = 1 x 3 x 5 x ..... x 59
a)abc chia hết 27
=>abc chia hết 3 và 9
mà abc chia hết 9 thì 100% chia hết 3
mà abc chia hết 9=>(a+b+c) chia hết 9
=>(b+c+a=a+b+c) chia hết 9 => bca chia hết 3
=>bca chia hết 27
a ) vì abc chia hết cho 27
=> bca chia hết cho 27 ( hiển nhiên đúng )
Tạo sao đó ?
abc chia hết 27 thì bca lại chia hết 27
chứng minh 16^5+14 chia hết cho 33
Chứng minh n thuộc N
a,74^n-1 chia hết cho 5
b,34^n+1 chia hết chi 5
c,24^n+2+1 chia hết cho 5
d,(9^2n+1) chia hết cho 10
Chứng minh rằng:n^2+5n+5 không chia hết cho 25 với mọi n thuộc N
Tìm số aba biết aba chia hết cho 33 (làm bằng 2 cách)
Mình đang cần gấp lắm nha mọi người
Cho 2a + 5 chia hết cho 7 . Chứng minh rằng 10a+11 chia hết cho 7
a + 5b chia hết 3 . Chứng minh rằng : 5a+3 chia hết 3
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!
cho n mũ 2 chia hết cho 5 chứng minh n mũ 2 chia hết cho 25
Cho A=3+32+33+......+32004
a)Chứng minh A chia hết cho 130
b)A có phải là số chính phương ko? Vì sao?
A = 3^1+3^2+3^3+...+3^30. Chứng minh rằng A chia hết cho 4, A chia hết cho 13
\(A=3^1+3^2+...+3^{30}\)
=> A=3(1+3) +...+ 329(1+3)
=3.4+ ... + 329.4 \(⋮\)4
Chia het 13 ban lam tuong tu nhe
a) Chứng minh rằng trong hai số tự nhiên liên tiếp có một số tự nhiên chhia hết cho 2
b) Chứng minh rằng trong ba số tư nhiên liên tiếp có một số chia hết cho 3
c) Chứng minh tích của hai số chẵn liên tiếp chia hết cho 4
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
a)
gọi 2 số tự nhiên liên tiếp là 2k;2k+1. ta có:
*nêu 2k lẻ=>2k+1 chẳn =>2k+1 chia hết cho 2
*nếu 2k+1 lẻ=> 2k chẳn =>2k chia hết cho 2
vậy DPCM