cho tam giác ABC cân tại A. M là trung điểm của BC. Lấy D thuộc AB, E thuộc AC sao cho \(\widehat{DME}=\widehat{B}\)
a) chứng minh BD.CE ko đổi
b) chứng minh DM là tia phân giác của góc BDE
Cho tam giác ABC cân tại A, có BC=2a, M là trung điểm BC, lấy D,E thuộc AB,AC sao cho \(\widehat{DME}=\widehat{B}\)
a) Chứng minh tích BD.CE không đổi
b) Chứng minh DM là tia phân giác của \(\widehat{BDE}\)
c) Tính C=chu vi của tam giác AED nếu tam giác ABC là tam giác đều
Cho tam giác ABC cân tại A có BC = 2a, M là trung điểm của BC. Lấy các điểm D, E theo thứ tự thuộc các cạch AB, AC sao cho \(\widehat{DME}\) = \(\widehat{B}\)
a) Chứng minh BC. CE không đổi.
b) Chứng minh DM là tia phân giác của góc BDE.
c) Tính chu vi tam giác AED nếu tam giác ABC đều.
Cho tam giác ABC cân tại A và M là trung điểm của BC. Lấy các điểm D,E theo thứ tự thuộc các cạnh AB,AC sao cho góc DME bằng góc B.
a) Chứng minh tam giác BDM đồng dạng với tam giác CME
b) Chứng minh BD.CE không đổi
c) Chứng minh DM là phân giác của góc BDE
Cho tâm giác ABC cân tại A và M là trung điểm của BC. Lấy các điểm D, E theo thứ tự thuộc các cạnh AB, AC sao cho góc DME bằng góc B.
a) Chứng minh : tâm giác BDM đồng dạng với tam giác CME
b) Chứng minh : BD.CE không đổi
c) Chứng minh DM là phân giác của góc BDE
Cho tam giác ABC cân tại A và M là trung điểm của BC . Lấy các điểm D,E theo thứ tự thuộc các cạnh AB , AC sao cho góc DME bằng góc B
a) Chứng minh tam giác AHB đồng dạng tam giác BCD
b) chứng minh BD.CE không đỏi
c) chứng minh DM là phân giác của góc BDE
H là gì , ở đâu đấy bn?
bn xem lại đề đi nhé
có j mk giúp
Cho tam giác ABC cân tại A và M là trung điểm của BC.Lấy các điểm D,E theo thứ tự thuộc các cạnh AB,AC sao cho \(\widehat{DME}\)=\(\widehat{B}\).
a) Chứng minh \(\Delta BDM\)đồng dạng với tam giác CME.
b) Chứng minh BD.CE không đổi.
c) Chứng minh DM là phân giác của \(\widehat{BDE}\).
Cho tam giác ABC cân tại A và M là trung điểm của BC . Lấy các điểm D,E theo thứ tự thuộc các cạnh AB,AC sao cho góc DME bằng góc B
a) Chứng minh :ΔBDM∼ΔCME
b) Chứng minh BD,CE không đổi
c) Chứng minh :DM là phân giác của góc BDE
Cho tam giác ABC cân tại A, M là trung điểm BC, lấy các điểm D, E theo thứ tự thuộc AB, AC sao cho \(\widehat{DME}\)= \(\widehat{B}\).
CMR: a) Tam giác BDM đồng dạng với tam giác CME
b) Tích BD.CE không đổi ( . là dấu nhân )
c) DM là tia phân giác của \(\widehat{BDE}\)
Cho tam giác ABC cân tại A với BC=2, M là trung điểm BC. Lấy D, E thuộc AB, AC sao cho\(\widehat{DME}=\widehat{B}\)
a. CM: tích BD. CE không đổi
b. DM là tia phân giác của \(\widehat{BDE}\)
c. Tính chu vi của tam giác AED nếu tam giác ABC là tam giác đều
Hình tự vẽ nhá
Vì tam giác ABC cân tại A nên:
\(\widehat{B}=\widehat{C}\)
Mà \(\widehat{B}=\widehat{DME}\)
Suy ra: \(\widehat{C}=\widehat{DME}\)
Mặt khác: \(\widehat{BME}=\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{C}\)(góc ngoài của tam giác MEC)
Suy ra: \(\widehat{BMD}=\widehat{MEC}\)
Xét tam giác BMD và tam giác CEM có:
+ \(\widehat{B}=\widehat{C}\)(gt)
+\(\widehat{BMD}=\widehat{MEC}\)(cmt)
Do đó: \(\Delta BMD~\Delta CEM\)(g.g)
Suy ra: \(\frac{BM}{CE}=\frac{BD}{CM}\Leftrightarrow BM\cdot CM=CE\cdot BD\)
Vì BM,CM không đổi (vì BM=CM) nên BM.CM không đổi
Vậy BD.CE không đổi
ý c nhé, a và b dễ tự làm nhé:
https://vn.answers.yahoo.com/question/index?qid=20110323013140AAJ5GpF