tìm số dư của a,bình phương của một số lẻ cho 8
b,2^1000 cho 5
c,2^1000 cho 25
tìm số dư trong phép chia
bình phương của một số lẻ cho 821000cho 521000cho 25
1, Khi chia một STN a cho 4, ta được số dư là 3 còn khi chia cho 9 ta được số dư là 5. Tìm số dư trong phép chia a cho 36
2, Khi chia một STN a cho một STN b ta được thương là 18 số dư là 24. Hỏi thương và số dư thay đổi thế nào thì SBC và SC giảm đi 6 lần
3, Tìm số dư trong phép chia sau:
\(a,2^{1000}:5\)
\(b,2^{1000}:25\)
Bài 1:
Theo đề bài ta có:
\(a=4q_1+3=9q_2+5\) (\(q_1\) và \(q_2\) là thương trong hai phép chia)
\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)
Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)
Mà \(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)
\(\Rightarrow a+13=36k\left(k\ne0\right)\)
\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)
Vậy \(a\div36\) dư \(23\)
Câu 1
Theo bài ra ta có:
\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)
\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)
và \(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)
Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1
nên a là bội của 4.9=36
\(\Rightarrow a+13=36k\left(k\in N\right)\)
\(\Rightarrow a=36k-13\)
\(\Rightarrow a=36.\left(k-1\right)+23\)
Vậy a chia 36 dư 23
Bài 3:
\(a,2^{1000}\div5\)
Ta có:
\(2^{1000}=\left(2^4\right)^{250}=\overline{\left(...6\right)}^{250}=\overline{\left(...6\right)}\)
Vì a có tận cùng là 6
\(\Rightarrow2^{1000}\div5\) dư \(1\)
tìm số dư của phép chia \(2^{1000}\) cho 25
tìm số dư của các phép tính sau:
a) 2^90 + 4^165 chia cho 7 b) 1^5 + 2^5 + 3^5 + ... + 99^5 chia cho 4 c)2^1000 chia cho 25
cám ơn :D
CMR
a, bình phương của một số lẻ chia cho 4 thi dư 1
b,bình phương của một số lẻ chia cho 8 thì dư 1
a) Một số lẻ thì có dạng 2a+1 (a thuộc N).
Ta có: (2a+1)2 = 4a2 + 4a +1
4a2 và 4a chia hết cho 4, cho nên 4a2 + 4a +1 chia 4 dư 1 => điều phải chứng minh
b) Tương tự: (2a+1)2 = 4a2 + 4a +1 = 4a(a+1) +1
Ta thấy a+1 là số chẵn => 4(a+1) chia hết cho 8 => 4a(a+1) +1 chia 8 dư 1 => điều phải chứng minh
a) Gọi số tự nhiên lẻ là 2x+1.
=>Bình phương của số lẻ là: (2x+1)2=4x2+4x+1=4x(x+1)+1=B(4)+1
=>Chia 4 dư 1.
Câu 1: Tìm bốn số tự nhiên liên tiếp mà hiệu của hai số chẵn cho hai số lẻ bằng 25
Câu 2:Một số chính phương chẵn ,một số chính phương lẻ khi chia cho 4 dư mấy.
tìm các số từ 1 đến 30 sao cho nó là
a) bình phương của một số tự nhiên
b) lập phương của một số tự nhiên
2) viết các số sau dưới dạng lũy thừa của 10
100; 1000; 10000; 1000000; 1000000000
B1: Cmr: a) bình phương của một số nguyên lẻ chia cho 4 thì dư 1
b) bình phương của một số nguyên lẻ chia cho 8 thì dư 1
B2: cmr: a) n2(n+1) + 2n(n+1) chia hết cho 6 với mọi n
b) (2n-1)3 - (2n - 1) chia hết cho 8
tìm số dư trong phép chia
21000chia cho 25