Tính giá trị biểu thức \(B=\sqrt{x^2-3x+14}+\sqrt{x^2-3x+8}\)
biết \(\sqrt{x^2-3x+14}-\sqrt{x^2-3x+8}=2\)
Cho \(x=\sqrt[3]{8-2\sqrt{14}}+\sqrt[3]{8+2\sqrt{14}}-1\). Tính giá trị biểu thức
\(Q=\left(x^6+3x^5-3x^4-2x^3+9x^2-9x+2018\right)\)
Tính giá trị biểu thức B= \(\sqrt{x^2-3x+14}\) +\(\sqrt{x^2-3x+8}\) =2
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
a) Tính giá trị biểu thức:
N=\(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
b)Rút gọn biểu thức:
A=\(\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}-2}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}+2}\),trị x>2
a) \(\sqrt{3x^2-5x+7}\)+\(\sqrt{3x^2+x+1}\) = 12x-12
b) \(\sqrt{x^2+33}\)+3 = 2x+\(\sqrt{x^2-12}\)
c) 3x-\(8\sqrt{x+14}\) = \(2\sqrt{2x-3}\) - 28
d) \(x^2\)+\(\sqrt{x+7}\) = 7
Cho\(x=\sqrt[3]{8+2\sqrt{14}}+\sqrt[3]{8-2\sqrt{14}}-1\).
Tính\(x^6+3x^5-3x^4-2x^3+9x^2-9x+2018\)
Đặt y = \(x+1=\sqrt[3]{8+2\sqrt{14}}+\sqrt[3]{8-2\sqrt{14}}\)
=> \(y^3=8+2\sqrt{14}+8-2\sqrt{14}+3\sqrt[3]{\left(8+2\sqrt{14}\right)\left(8-2\sqrt{14}\right)}.y\)
<=> \(y^3=16+6y\)
=> \(\left(x+1\right)^3=16+6\left(x+1\right)\)
=> \(x^3+3x^2+3x+1=6x+32\)
<=> \(x^3+3x^2-3x-5=26\)
Ta có:
\(x^6+3x^5-3x^4-2x^3+9x^2-9x+2018\)
= \(x^6+3x^5-3x^4-5x^3+3x^3+9x^2-9x-15+2033\)
= \(\left(x^3+3x^2-3x-5\right)\left(x^3+3\right)+2033\)
= \(26x^3+2111\)
\(=26\left(\sqrt[8]{8+2\sqrt{14}}+\sqrt[8]{8-2\sqrt{14}}-1\right)^3+2033\)
CHo biểu thức :
A = \(\left(\frac{6x-4}{3\sqrt{3x^3}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Rút gọn biểu thức A
b) Tìm các giá trị nguyên của x đẻ biểu thức A nhận giá trị nguyên
Cho \(x=\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)-\frac{2\sqrt{6}+\sqrt{3}}{\sqrt{8}+1}\)
Tính giá trị biểu thức \(A=x^5-3x^4-3x^3+6x^2-20x+2022\)
\(A=\left(\frac{6x+4}{3\sqrt{3x^3}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) rút gọn biểu thức A
b) tìm giá trị nguyên của x để A nhận giá trị nguyên
a) Ta có: \(3x+2\sqrt{3x}+4=\left(\sqrt{3x}+1\right)^2+3>0;1+\sqrt{3x}>0,\forall x\ge0\), nên đk để A có nghĩa là
\(\left(\sqrt{3x}\right)^3-8-\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)\ne0;x\ge0\Leftrightarrow\sqrt{3x}\ne2\Leftrightarrow0\le x\ne\frac{4}{3}\)
A=\(\left(\frac{6x+4}{\left(\sqrt{3x}\right)^3-2^3}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+\left(\sqrt{3x}\right)^3}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
\(=\left(\frac{6x+4-\left(\sqrt{3x}-2\right)\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-\sqrt{3x}+1-\sqrt{3x}\right)\)
\(=\left(\frac{3x+4+2\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-2\sqrt{3x}+1\right)\)
\(=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\left(0\le x\ne\frac{4}{3}\right)\)
b) \(A=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}=\frac{\left(\sqrt{3x}-2\right)^2+2\left(\sqrt{3x}-2\right)+1}{\sqrt{3x}-2}=\sqrt{3x}+\frac{1}{\sqrt{3x}-2}\)
Với \(x\ge0\), để A là số nguyên thì \(\sqrt{3x}-2=\pm1\Leftrightarrow\orbr{\begin{cases}\sqrt{3x}=3\\\sqrt{3x}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=9\\3x=1\end{cases}\Leftrightarrow}x=3}\) (vì \(x\in Z;x\ge0\))
Khi đó A=4