Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Nguyễn
Xem chi tiết
Monkey D. Luffy
17 tháng 11 2021 lúc 17:00

\(a,ĐK:2-x^2\ge0\Leftrightarrow x^2\le2\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\\ b,ĐK:5x^2-3>0\Leftrightarrow x^2>\dfrac{3}{5}\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{\sqrt{15}}{5}\\x< -\dfrac{\sqrt{15}}{5}\end{matrix}\right.\\ c,ĐK:-\left(2x-1\right)^2\ge0\Leftrightarrow x=\dfrac{1}{2}\\ d,ĐK:x^2+x-2>0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)

Vy Võ
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 8 2021 lúc 20:59

a: ĐKXĐ: \(\dfrac{x-1}{5-x}\ge0\)

\(\Leftrightarrow\dfrac{x-1}{x-5}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow1\le x< 5\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\)

Anh Thơ Nguyễn
Xem chi tiết
nguyễn viết hạ long
Xem chi tiết
Gumm
Xem chi tiết
Trần mạnh tới
Xem chi tiết
Lùn Tè
Xem chi tiết
tuấn lê
Xem chi tiết
okok
Xem chi tiết
Không Tên
21 tháng 10 2018 lúc 7:06

ĐKXĐ:   \(x\ge0;\)\(x\ne1\)

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)

\(=\left(\frac{x}{\sqrt{x} \left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{1}{\sqrt{x}-1}\)

\(=\frac{x-1}{\sqrt{x}}\)

Không Tên
21 tháng 10 2018 lúc 7:18

a) bổ sung ĐKXĐ nhé:   \(x>0;\)\(x\ne1\)

b)  \(P< 0\)

=>  \(\frac{x-1}{\sqrt{x}}< 0\) 

=>  \(x-1< 0\)   (do \(\sqrt{x}>0\))

=>  \(x< 1\)

=>  \(0< x< 1\)

Không Tên
21 tháng 10 2018 lúc 7:21

\(P=\frac{x-1}{\sqrt{x}}\)

\(=\frac{4-2\sqrt{3}-1}{\sqrt{4-2\sqrt{3}}}\)

\(=\frac{3-2\sqrt{3}}{\sqrt{3}-1}=\frac{\left(3-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{2}\)

\(=\frac{\sqrt{3}-3}{2}\)