chứng minh rằng:1+5^2+...+5^97+5^98+5^99 chia hét cho 31
Chứng minh rằng tổng1+5+52+.............................+597+598+599 chia hết cho 31
Số số hạng: (99-0):1+1=99(số hạng)
1+5+5^2+...+5^99=(1+5+5^2)+5^3x(1+5+5^2)+5^6x(1+5+5^2)+...+5^97x(1+5+5^2) [vì có 99 số hạng chia hết cho 3]
=31+5^3x31+5^6x31+...+5^97x31=(1+5^3+5^6+...+5^97)x31 chia hết cho 31.
Chứng tỏ rằng :
A = 1 + 5 + 52 + ..... + 597 + 598 + 599 chia hết cho 31
em mới học lớp 5 thôi nên em ko chả lời được.
\(A=1+5+5^2+..........+5^{97}+5^{98}+5^{99}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...........+\left(5^{97}+5^{98}+5^{99}\right)\)
\(=31+5^3\left(1+5+5^2\right)+.........+5^{57}\left(1+5+^2\right)\)
\(=32+5^3.31+..........+5^{97}.31⋮31\left(ĐPCM\right)\)
A = 1+ 5^1+5^2+...+5^97+5^98+5^99
chứng tỏ A chia hết cho 31
( hết thú 3 nhé!)
Lời giải:
$A=1+5+5^2+5^3+...+5^{98}+5^{99}$
$=1+(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^{97}+5^{98}+5^{99})$
$=1+5(1+5+5^2)+5^4(1+5+5^2)+...+5^{97}(1+5+5^2)$
$=1+(1+5+5^2)(5+5^4+...+5^{97})$
$=1+31(5+5^4+....+5^{97})$
$\Rightarrow A$ chia $31$ dư $1$
Bài 1: Chứng tỏ rằng:
A = 1 + 5 + 52 + 53 + .......... + 597 + 598 + 599 chia hết cho 31
A = 1 + 5 + 52 + 53 + ... + 597 + 598 + 599
A = ( 1 + 5 + 52 ) + ( 53 + 54 + 55) + ... + ( 597 + 598 + 599 )
A = ( 1 + 5 + 52 ) + 53 ( 1 + 5 + 52 ) + ... + 597( 1 + 5 + 52 )
A = 31 ( 1 + 53 + ... + 597 )
=> A chia hết cho 31
ban oi mk thay A ko chia het cho 31 vi gop 3 so moi chia het ma co 100 so thi gop 3 so se du 1 so 5^99
neu 5^99 chia het cho 31 thi A moi chia het cho 31
neu sai mong cac ban thong cam nha
Chứng minh rằng 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
Tìm số đuôi của tất các số trên nhân thử vào:
9 x 9 x 9 x 9 x 9 = đuôi 9
4 x 4 x 4 x 4 = đuôi 6
.......
9 - 6 + 3 - 6 = 0
Suy ra chia hết cho cả 2 và 5 thôi
Ta có: 995=992.2+1=(992)2.99=(...1)2.99=(....1)2.99=(.....9)
Ta có: 984=(...6)
Ta có: 973=972+1=972.97=(...9).97=(.....3)
Ta có: 962=(....6)
Do đó: 995-984+973-962=(....9)-(....6)+(....3)-(....6)=(......0) chia hết cho 2 và 5 (đpcm)
Chứng minh rằng:
a, 942^60 - 351^37 chia hết cho 5
b, 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
1.chứng minh rằng;
942^60 - 351^37 c hết cho 599^5 - 98^4 -97^3 -96^2 chia hét cho 2 và 59^2n - 1 chia hết cho 105^n -1 chia hết cho 48 .n + 111......1 <có n chữ số 1 >3^n +2 +3^n chia hết cho 107^n + 4 - 7^n chia hết cho 30trả lời giúp mình với tối nay phải nộp rồi !tớ cũng có đề bài giống nguyễn thị bích ngọc các cậu giải cho tớ nhé
Chứng tỏ rằng :A=1+5+52+53+....+597+598+599 chia hết cho 31
Giúp mình vs!!!
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
Cứ 3 số góp thành 1 nhóm: => A = (1+5+52) + (53+54+55) +...+(597+598+599) => A= 31 + 53(1+5+52) +...+ 597(1+5+52) => A= 31*(1+53+...+597) => A chia hết cho 31
A=(1+5+5^2)+(5^3+5^4+5^5)+.......+(5^97+5^98+5^99)
A=31+5^3+(1+5+5^2)+......+5^97x(1+5+5^2)
A= 31+5^3+31+.......+5^97x31
A=31x(5^3+.........+5^97)chia hết cho 31 do 31 chia hết cho 31
Vậy.............
Chứng minh rằng:
Câu a: 942^60-351^37 chia hết cho 5
Câu b: 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5