Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Xuân Diện
Xem chi tiết
Mi Trần
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 7:47

a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

b) Đề bài sai ^^

Lê Thị Trà MI
Xem chi tiết

từ giả thiết suy ra

\(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\frac{-1}{c^3}\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{-3.1}{\frac{a.1}{b.\left(\frac{1}{a+\frac{1}{b}}\right)}}=3...\)

\(\Rightarrow\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

=abc.3/(abc)=3

Khách vãng lai đã xóa
Nguyễn Linh Chi
31 tháng 12 2019 lúc 13:51

Câu hỏi của ngô thị đào - Toán lớp 8 - Học toán với OnlineMath

Bài làm đúng.

Khách vãng lai đã xóa
Trương Trần Duy Tân
Xem chi tiết
Trần Thị Loan
1 tháng 11 2015 lúc 20:26

\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\) 

=> \(a-b=\frac{1}{c}-\frac{1}{b}\) => a - b = \(\frac{b-c}{bc}\) (1)

b - c = \(\frac{1}{a}-\frac{1}{c}\) => b - c = \(\frac{c-a}{ac}\)  (2)

c - a = \(\frac{1}{b}-\frac{1}{a}=\frac{a-b}{ab}\) (3)

Nhân vế với vế của  (1)(2)(3) => \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\frac{b-c}{bc}.\frac{c-a}{ac}.\frac{a-b}{ab}\)

=> (abc)= 1 => abc = 1 hoặc abc  = -1

Vậy...  

 

lyzimi
Xem chi tiết
ma tốc độ
9 tháng 12 2015 lúc 13:49

nhật minh lm sai r

Từ : a+1b = b+1c
 a-b=1c-1b
 a-b=bcbc (1)
Từ : b+1c=c+1a
 b-c = c+1a
 b-c = bcac(2)
Từ : c+1a=a+1b
 c-a =1b-1a
 c-a=abab(3)
Nhân tùng vế của (1)(2)(3) cho nhau ,ta đc:
(a-b)(b-c)(c-a) = (ab)(bc)(ca)a2b2c2
 a^2b^2c^2(a-b)(b-c)(c-a)=(a-b)(b-c)(c-a)
 (a-b)(b-c)(a^2b^2c^2 -a)=0
Vì a,b,c đôi một khác nhau 
 ( a-b)(b-c)(c-a)khác 0
 a^2b^2c^2 -1 =0
 abc= 1 or abc=-1

Nguyễn Nhật Minh
9 tháng 12 2015 lúc 13:25

Giả  sử abc =1 ta có

\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\Leftrightarrow a+ac=b+bc=c+bc\)

=>a(1+c)=b(1+c)=c(1+b)

=>a =b=c vô lí vì a;b;c đôi 1 khác nhau

=> Không có a,b,c nào thỏa mãn ,

Nguyễn Bảo Trân
Xem chi tiết
D.Khánh Đỗ
Xem chi tiết
thu
Xem chi tiết
nguyễn thị huyền anh
24 tháng 6 2018 lúc 16:06

bài này có trong câu hỏi tương tự nhé bạn

ST
24 tháng 6 2018 lúc 20:52

Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=0\)

\(\Leftrightarrow ab+bc+ac=0\Rightarrow\hept{\begin{cases}ab=-bc-ac\\bc=-ac-ab\\ac=-ab-bc\end{cases}}\)(*)

Thay (*) vào M ta được:

\(M=\frac{1}{a^2+bc-ab-ac}+\frac{1}{b^2+ac-ab-bc}+\frac{1}{c^2+ab-bc-ac}\)

\(=\frac{1}{a\left(a-b\right)-c\left(a-b\right)}+\frac{1}{a\left(c-b\right)-b\left(c-b\right)}+\frac{1}{c\left(c-a\right)-b\left(c-a\right)}\)

\(=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(a-b\right)\left(c-b\right)}-\frac{1}{\left(c-b\right)\left(a-c\right)}\)

\(=\frac{c-b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}-\frac{a-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}\)

\(=\frac{c-b+a-c-a+b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=0\)

Vậy M = 0

Duong Thuc Hien
Xem chi tiết