Vì sao a2 luôn lớn hơn hoặc bằng 0 với mọi a thuộc Z?
vì sao m2 cộng 4 lại luôn lớn hơn hoặc bằng 0 với mọi m
refer
Ta có:
*Trường hợp 1: M<0
Vì âm nhân âm ra dương nên m2>0
hay (-m)(-m)>0
*Trường hợp 2: M=0
hay m2=0
*Trường hợp 3: M>0
Vì dương nhân dương ra dương nên m2>0
hay m20(đpcm)
Vì \(m^2\ge0\forall m\)
⇒ \(\left(m^2+4\right)\ge4\forall m\)
khẳng định nào sao đây không đúng :
|x|2 = x2 với mọi số x thuộc Z
|x|=|-x| với mọi x thuộc Z
-x bé hơn hoặc bằng x bé hơn hoặc bằng |x| với mọi x thuộc Z
|x| lớn hơn hoặc bằng 0 với mọi x thuộc Z
chứng minh rằng với mọi a,b thuộc Z thì |a|+|b| luôn lớn hơn hoặc bằng |a+b|
Chứng minh với mọi số a thuộc Z ta luôn có giá trị tuyệt đối của a luôn lớn hơn hoặc bằng a
Chứng minh rằng với mọi số tự nhiên a thuộc Z thì gia strij tuyệt đối của a luôn lớn hơn hoặc bằng a
cho biểu thức: A= 4x(x+y)(x+y+z)(x+z)+y2z2
CM: A luôn lớn hơn hoặc bằng 0 với mọi x,y,z
CMR với mọi a,b thuộc Z,ta có:
a) Ia+bI nhỏ hơn hoặc bằng IaI+IbI
dấu = xảy ra khi a.b lớn hơn hoặc bằng 0.
b)Ia-bI lớn hơn hoặc bằng IaI-IbI
dấu = xảy ra khi a.b lớn hơn hoặc bằng 0
Chứng minh với mọi số a thuộc Z thì giá trị tuyệt đối của a luôn lớn hơn hoặc bằng a
Giúp mình mới mai phải mộp rùi
Làm như Vầy :
Theo bài thì ta có
/x/ + /z/ + /y/ < 0
\(\Rightarrow\)/x/ + /z/ + /y/ = 0 hoặc /x/ + /z/ + /y/ < 0
nếu /x/ + /z/ + /y/ = 0
thì x , y , z đều bằng 0
vì nếu trong x , y , z có số lớn hơn 0 thì không thể ra 0 vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
Nếu /x/ + /z/ + /y/ < 0
thì ta không tìm được kết quả vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
Vậy x , y , z đều bằng 0
Làm như Vầy :
Theo bài thì ta có
/x/ + /z/ + /y/ < 0
\(\Rightarrow\)/x/ + /z/ + /y/ = 0 hoặc /x/ + /z/ + /y/ < 0
nếu /x/ + /z/ + /y/ = 0
thì x , y , z đều bằng 0
vì nếu trong x , y , z có số lớn hơn 0 thì không thể ra 0 vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
Nếu /x/ + /z/ + /y/ < 0
thì ta không tìm được kết quả vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
Vậy x , y , z đều bằng 0