Cho nửa đường tròn (O,R) đường kính AB, M là điểm nằm trên nửa đưởng tròn, tiếp tuyến tại M cắt các tiếp tuyến tại A và B ở C và D. Cho biết BM = R , tính theo R diện tích tam giác ACM ?
Cho nửa đường tròn (O;R) đường kình AB, M là điểm trên nửa đường tròn, tiếp tuyến tại M cắt hai tiếp tuyến tạ A và B ở C và D a) Chứng minh: CD= AC+BD và tam giác COD vuông b) Chứng minh: AB là tiếp tuyến của đường tròn đường kính CD. Biết BM=R tính theo R diện tích tam giác ACM
Kẻ OC và OD
a)Ta có: AC và CM là tiếp tuyến của đường tròn (O), cắt nhau tại C
=>CM=AC (1) , OC là phân giác của ∠AOM ⇔ ∠AOC= ∠MOC
Lại có: BD và MD là 2 tiếp tuyến của đường tròn (O), cắt nhau tại D
=> BD=MD(2) , OD là tia phân giác của ∠BOM ⇔ ∠BOD =∠MOD
Vì ∠AOC+∠COM+∠MOD+∠DOB=∠AOB=180O
Mà ∠AOC=∠COM, ∠MOD=∠DOB
Nên ∠AOC+∠COM+∠MOD+∠DOB=180o
⇔ 2∠COM+ 2∠MOD=180o
⇔ 2(∠COM+ ∠MOD)=180o
⇔ ∠COM+ ∠MOD=\(\dfrac{180^0}{2}\)=90o
Vì ∠COD=∠COM+ ∠MOD mà ∠COM+ ∠MOD=90o nên ∠COD=90o =>△COD là tam giác vuông(3)
Từ (1),(2) và(3), suy ra:
Trong △COD,có: CD=CM+MD =AC+BD
Vậy CD=AC+BD (đpcm)
b) Lấy I là trung điểm của CD (I ∈ CD) và kẻ OI
Ta có: △COD là tam giác vuông
Và OI ứng với cạnh huyền CD=> IO=\(\dfrac{CD}{2}\)
=> IO=CI=ID (1)
Vì AC⊥AB⊥BD nên AC song song với BD
=> ACDB là hình thang vuông(1)
Lại có: I là trung điểm của CD và O là trung điểm của AB
=>OI là đường trung bình của hình thang ACDB(2)
Từ (1) và (2), suy ra: IO ⊥AB
=> AB là tiếp tuyến của đường tòn đường kính CD (đpcm)
cho nửa đường tròn ( O;R) đường kính AB. M là điểm trên nửa đường tròn. Tiếp tuyến tại M cắt các tiếp tuyến tại A và B ở C và D. Chứng minh:
a, CD= AC+ BD và tam giác COD vuông
b, AC.BD = R^2
c, AB là tiếp tuyến của đường tròn đường kính CD
Cho nửa đường tròn (O;R), đường kính AB. M là điểm nằm trên nửa đường tròn, tiếp tuyến tại M cắt các tiếp tuyến tại A và B ở C và D
a) Chứng minh CD= AC+DB và tam giác COD vuông
b) Chứng minh AC.BD=R2
c) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD
Cho nửa đường tròn tâm O bán kính R, đường kính AB. C là điểm trên đoạn OA sao cho OC = 2/3 OA. Đường thẳng vuông góc với AB tại C cắt nửa đường tròng ( O:R) tại I. Gọi H là điểm chuyển động trên đoạn CI. Đường thẳng AH cắt nửa đường tròn (O;R) tại M. Đường thẳng BM cắt đường thẳng CI tại D. Tiếp tuyến tại M của nửa đường tròn (O;R) cắt CD tại K. Cho CH = 2/3 CI. Tính diện tích tam giác ABD theo R
cm dc: tam giac ACH dong dang voi tam giac DCB
=> DC/AC = CB/CH
=> DC= AC.CB/CH
MA CH= 2/3 IC =>CH^2 =4/9. IC^2 =4/9. AC.CB => THE VAO TINH DUOC DC THEO R =CAN5/4.R
=>DIEN TICH=CAN5/4. R^2
Cho nửa đường tròn (O;R) đường kính AB. Kẻ hai tiếp tuyến Ax và By nằm cùng phía với nửa đường tròn. M là điểm bất kỳ trên nửa đường tròn ( M khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax và By lần lượt tại E và N.
a) Chứng minh AOME và BOMN là các tứ giác nội tiếp. b) Chứng minh AE. BN = R2 . c) Kẻ MH vuông góc By. Đường thẳng MH cắt OE tại K. Chứng minh AK MN ⊥ . d) Giả sử MAB R=α và MB < MA. Tính diện tích phần tứ giác BOMH ở bên ngoài nửa đường tròn (O) theo R và α . e) Xác định vị trí của điểm M trên nửa đường tròn (O) để K nằm trên đường tròn (O) .
Bài 1: Cho đường tròn (O) và điểm M ở ngoài đường tròn. Từ M kẻ tiếp tuyến MA,MB với đường tròn (A,B là tiếp điểm ), tia OM cắt đường tròn tại C, tiếp tuyến tại C cắt tiếp tuyến MA,MB tại P và Q. Chứng minh rằng diện tích tam giác MPQ lớn hơn một nửa diện tích tam giác ABC.
Bài 2: Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ nửa đường tròn (O) đường kính AB và các tiếp tuyến Ax, By. Qua điểm M thuộc một nửa đường tròn này, kẻ tiếp tuyến cắt Ax, By theo thứ tự tại C và D. Gọi N là giao điểm của AD và BC. CMR: MN vuông góc với AB
Cho đường tròn (O; R) đường kính AB, điểm M nằm trên đoạn OB ( M khác O và B), từ M kẻ đường thẳng vuông góc với AB cắt (O) tại hai điểm C và E. Gọi F là hình chiếu củ C trên AE và I là hình chiếu của M lên CF. Đường thẳng AI cắt (O) tại điểm thứ hai là H.
a, Tiếp tuyến tại C của (O) cắt đường thẳng AB tại D. Gọi (O1) là đường tròn ngoại tiếp tam giác CHD. Chứng minh BD là tiếp tuyến (O1).
b, Gọi O2 là tâm đường tròn ngoại tiếp tam giác MHD. Biết OM= (R√2)/2, tính diện tích tam giác OO1O2 theo R.
a) Ta có \(IM//AE\)suy ra \(\widehat{MIH}=\widehat{EAH}\). Mà \(\widehat{EAH}=\widehat{ECH}\)nên \(\widehat{MIH}=\widehat{MCH}\). Suy ra tứ giác CIMH nội tiếp.
Dễ dàng chỉ ra được ED là tiếp tuyến của \(\left(O\right)\)suy ra \(\widehat{HED}=\widehat{HCE}\)\(\left(1\right)\)
Do tứ giác CIMH nội tiếp nên \(\widehat{CHM}=90^0\)suy ra \(\widehat{HCM}+\widehat{HMC}=90^0\)
Mà \(\widehat{HMD}+\widehat{HMC}=90^0\)nên \(\widehat{HCM}=\widehat{HMD}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{HED}=\widehat{HMD}\)nên tứ giác EMHD nội tiếp. Do đó \(\widehat{HDM}=\widehat{HEM}\)mà \(\widehat{HEM}=\widehat{HCD}\)nên \(\widehat{HDM}=\widehat{HCD}\)
Từ đó chứng minh được BD là tiếp tuyến của \(\left(O_1\right)\)
b) Sử dụng tính chất đường nối tâm vuông góc với dây chung ta có: \(OO_2\perp HE,O_2O_1\perp HD\)và do \(EH\perp HD\)suy ra \(OO_2\perp O_2O_1\)
Dễ thấy \(\widehat{COM}=45^0\)suy ra \(\widehat{CAE}=45^0\)nên \(\widehat{O_2OO_1}=45^0\). \(\Delta O_2OO_1\)vuông cân tại \(O_2\)
Tứ giác OCDE là hình vuông cạnh R và \(O_2\) là trung điểm của DE nên ta tính được \(O_2O^2=\frac{5R^2}{4}\)
.Vậy diện tích \(\Delta O_2OO_1\) là\(\frac{5R^2}{8}\)
Cho đường tròn (O; R) đường kính AB, điểm M nằm trên đoạn OB ( M khác O và B), từ M kẻ đường thẳng vuông góc với AB cắt (O) tại hai điểm C và E. Gọi F là hình chiếu củ C trên AE và I là hình chiếu của M lên CF. Đường thẳng AI cắt (O) tại điểm thứ hai là H.
a, Tiếp tuyến tại C của (O) cắt đường thẳng AB tại D. Gọi (O1) là đường tròn ngoại tiếp tam giác CHD. Chứng minh BD là tiếp tuyến (O1).
b, Gọi O2 là tâm đường tròn ngoại tiếp tam giác MHD. Biết OM= (R√2)/2, tính diện tích tam giác OO1O2 theo R.
Cho nửa đường tròn (O) đường kính AB,Ax và By là hai tiếp tuyến của (O) tại A và B. Lấy điểm M bất kì trên nửa đường tròn, tiếp tuyến tại M của (O) cắt Ax,By lần lượt tại C và D.
1) Chứng minh các tứ giác AOMC và BOMD nội tiếp.
2) Giả sử BD = 3 R , tính diện tích tứ giác ABDC.
3) Nối OC cắt AM tại E, OD cắt BM tại F, kẻ MN ⊥ AB tại N, chứng minh ONEF là hình thang cân.
4) Tìm vị trí ‘của M trên nửa đường tròn để chu vi đường tròn ngoại tiếp tam giác CEF nhỏ nhất.
Bạn tự vẽ hình nhé :
1.Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM\perp OM,CA\perp OA\)
\(\Rightarrow CAOM\)nội tiếp đường tròn đường kính OC
Tương tự DMOB nội tiếp đường tròn đường kính OD
2 . Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM=CA,OC\) là phân giác \(\widehat{AOM}\)
Tương tự DM = DB , OD là phân giác ^BOM
Mà \(\widehat{AOM}+\widehat{MOB}=180^0\)
\(\Rightarrow OC\perp OD\)
Lại có ; \(OM\perp CD\Rightarrow CM.DM=OM^2\Rightarrow CM.DM=R^2\)
Mà : \(CM=CA,DM=DB\Rightarrow AC.BD=R^2\Rightarrow AC.3R=R^2\Rightarrow AC=\frac{R}{3}\)
\(\Rightarrow S_{ABCD}=\frac{1}{2}AB\left(BD+CA\right)=\frac{1}{2}.2R.\left(3R+\frac{R}{3}\right)=\frac{10R^2}{3}\)
3.Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CO\perp AM=E\) là trung điểm AM
Tương tự \(OD\perp BM=F\) là trung điểm BM
\(\Rightarrow MN\) là đường trung bình \(\Delta ABC\Rightarrow EF//MN\)
Mà \(OE\perp ME,OF\perp MF,MN\perp ON\)
\(\Rightarrow M,E,N,O,F\in\) đường tròn đường kính OM
\(\Rightarrow EFNO\) nội tiếp
\(\Rightarrow\widehat{EFO}+\widehat{ENO}=180^0\)
Mà \(\widehat{NEF}+\widehat{ENO}=180^0\) ( EF // AB => EF//NO )
\(\Rightarrow EFON\) là hình thang cân