Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Thư
Xem chi tiết
Nguyễn Minh Quang
27 tháng 8 2021 lúc 9:23

\(F=\frac{x-1+16}{\sqrt{x}+1}=\sqrt{x}-1+\frac{16}{\sqrt{x}+1}=\sqrt{x}+1+\frac{16}{\sqrt{x}+1}-2\)

\(\ge2\sqrt{\left(\left(\sqrt{x}+1\right).\frac{16}{\sqrt{x}+1}\right)}-2=8-2=6\) vậy GTNN của F=6 khi \(\sqrt{x}+1=\frac{16}{\sqrt{x}+1}\Leftrightarrow x=9\)

\(G=\frac{x-9+4}{\sqrt{x}+3}=\sqrt{x}-3+\frac{4}{\sqrt{x}+3}=\sqrt{x}+3+\frac{4}{\sqrt{x}+3}-6=\frac{5}{9}\left(\sqrt{x}+3\right)+\frac{4}{9}\left(\sqrt{x}+3\right)+\frac{4}{\sqrt{x}+3}-6\)

\(\ge\frac{5}{9}\left(\sqrt{x}+3\right)+2\sqrt{\left(\frac{4}{9}\left(\sqrt{x}+3\right).\frac{4}{\sqrt{x}+3}\right)}-6\ge\frac{5}{3}+\frac{8}{3}-6=-\frac{5}{3}\) vậy GTNN G =- 5/3 khi x=0

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
27 tháng 8 2021 lúc 15:35

\(F=\frac{x-1+16}{\sqrt{x}+1}=\frac{x-1}{\sqrt{x}+1}+\frac{16}{\sqrt{x}+1}=\sqrt{x}-1+\frac{16}{\sqrt{x}+1}\)

\(=\left[\left(\sqrt{x}+1\right)+\frac{16}{\sqrt{x}+1}\right]-2\ge2\sqrt{\left(\sqrt{x}+1\right)\cdot\frac{16}{\sqrt{x}+1}}-2=6\)

Dấu "=" xảy ra <=> x = 9

Khách vãng lai đã xóa
Thái Doãn Kiên
Xem chi tiết
thuan doan
5 tháng 5 2019 lúc 16:51

sử dụng phương pháp miền giá trị

Thái Doãn Kiên
5 tháng 5 2019 lúc 20:32

bạn nói rõ hơn được không?

vuongthiquynh
Xem chi tiết
Quandung Le
Xem chi tiết
tinviet
21 tháng 10 2019 lúc 21:11

khó quá còn gì

Khách vãng lai đã xóa
ĐẶNG QUỐC SƠN
Xem chi tiết
Kha Nguyễn
Xem chi tiết
Trần Hoàng Thiên Bảo
Xem chi tiết
alibaba nguyễn
19 tháng 11 2016 lúc 10:57

1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)

Đạt được khi x = 9

alibaba nguyễn
19 tháng 11 2016 lúc 11:02

2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)

\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)

\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)

Không có GTLN nhé

alibaba nguyễn
19 tháng 11 2016 lúc 11:08

3/ Điều kiện xác định bạn tự làm nhé

\(\frac{16}{\sqrt{x}+3}=\frac{-8\sqrt{x}+5}{3\sqrt{x}+1}\)

\(\Leftrightarrow8x+67\sqrt{x}+1=0\)

Tới đây thì bạn xem như phương trình bậc 2 là giải tiếp được. Nhớ đối chiếu điều kiện để loại nghiệm

Hà Trang
Xem chi tiết
alibaba nguyễn
9 tháng 11 2016 lúc 16:19

\(P=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)

\(=\frac{x^2-\sqrt{x}-2x\sqrt{x}+2x}{x-\sqrt{x}+1}=\frac{\left(x-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}=x-\sqrt{x}\)

\(=\left(x-\frac{2\sqrt{x}}{2}+\frac{1}{4}\right)-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{4}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(\frac{-1}{4}\)đạt được khi x = \(\frac{1}{4}\)

Ko co ten
Xem chi tiết
Mina
26 tháng 7 2018 lúc 19:16

ko bit