Tìm n để 1.2+2.3+3.4+...........+n(n+1) chia hết cho 1+2+3+4+...........+n
giải nhanh giúp mk nha
tính các tổng sau:
A=1.2+2.3+3.4+...+n(n+1)
B=1.2.3+2.3.4+...+n(n+1)(n+2)
C=1.2+3.4+5.6+...+2017.2018
D=1.4+2.5+3.6+...+n(n+3)
Giúp mk nha, ai nhanh mk k!
1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.
2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1)
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4
ghi dọc cho dễ nhìn:
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1)
ad cho k chạy từ 2 đến n ta có:
1.2.3.4 = 1.2.3.4
2.3.4.4 = 2.3.4.5 - 1.2.3.4
3.4.5.4 = 3.4.5.6 - 2.3.4.5
...
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn)
4S = (n-1)n(n+1)(n+2)
3.
1.Tính:
A=1.2+2.3+3.4+......+99.100
B=1.2.3+2.3.4+.....+98.99.100
C=1.2+2.3+5.6+.......+99.100
2.A=3+3^2+3^3+.....+3^2016
a,Chứng minh rằng A chia hết cho 52
b,Tìm cs tận cùng của A
Các bn giúp mk nha,ai nhanh,ai đúng mk k!
Chị dùg cách tính tổng đi
1. Tìm dãy cách đều bao nhiêu
2. Từ công thức tính tổng rồi suy ra
Trời ơi , khẩn cấp giúp mình vs , dc ko các bạn!!!!!!!!!!!!!!
1.2+2.3+3.4+......+n.(n+1) chia hết cho 3
giúp mk vs các bn.mai thầy bắt mk nộp rùi,help me
bài 1 : tìm tập hợp các số nguyên x thỏa mãn :
a) x+1 thuộc Ư(15). b) 5x +7 thuộc B(x-2). c) x-y=6-2xy.d)x+y=x.y
bài 2: cmr:tồn tại 1 stn viết toàn bằng cs 6 và chia hết cho 2003
bài 3: tính tổng S=1.2+2.3+3.4+...+30.31
bài 4 :tìm n thuộc Z biết : n2-2n-22 chia hết cho n+3
Xin lỗi, mk chỉ biết bài 3:
Nhân cả 2 vế với 3 ta có:
3S = 1.2.3 +2.3.3 +3.4.3 +......+ 30.31.3
3S= 1.2.3 +2.3.( 4 - 1 ) +3.4. ( 5 - 2 ) +....+ 30.31. ( 32 - 29 )
3S= 1.2.3 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 +.....+ 30.31.32 - 30.31.29
3S= 30.31.32
S = 30.31.32 : 3
S = 9920
Vậy S = 9920
có ai còn thức thì giúp mk làm bài 4 vs nhé.gấp lắm rồi
Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
nhanh mk tk cho
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
S=1.2+2.3+3.4+.....+n(n+1)(n thuôc Nsao)\
CMR 3S+n(n+1) chia hết cho 1n2-2 là số chính phương
khoảng cần 3 người trao đổi **** với mình nữa!
a, Chứng minh ràng : [ ( 1+2+3+.... + n ) -7 ] ko chia hết cho 10 ∀n ∈ N b, Tính nhanh 1.2 + 2.3 +=3.4 + .... + 1999.1999 c, áp dụng kết quả phần b, tính nhanh B = 1.1 + 2.2 +3.3 + ... +1999.1999 d, tính nhanh : C = 1.2.3 + 2.3.4 + ... + 48.49.50 Giups mình với nhé !!!! THANK YOU
giúp vớiiiiiiiiiiiiiiiiiiiiiiiii
123456789BFGBJTYT
Bài 1 : CMR ( với n thuộc N sao )
a , 1+4+7+...+ ( 3n - 2 ) = n ( 3n + 1 ) / 2
b , 2 + 4 + 6 + ... + 2n = n ( n + 1 )
Bài 2 : CMR ( với n thuộc N sao ) thì :
a , 1.2 + 2.3 + 3.4 + ... + n ( n + 1 ) = n ( n + 1 ) ( n + 2 ) / 3
b , 1.4 + 2.7 + 3 . 10 + ... + n ( 3n + 1 ) = n ( n + 1 )^2
c , 1.2 + 2.5 + 3.8 + ... + n ( 3n - 1 ) = n^2 ( n + 1 )
NHỚ CHỨNG MINH THEO PHƯƠNG PHÁP QUY NẠP NHA
AI LÀM NHANH + HẾT CẢ => DÙNG HƠN 10 NICK CỦA MK ĐỂ TK CHO
Bạn nào giúp mk vs:
1.2 + 2.3 + 3.4+...+n.( n+1)
1.2 + 2.3 + 3.4+...+n.( n+1)=A
=>3.A=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ n.(n+1) . ((n+2) - (n-1))
=>3.A=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1)+ n. (n+1). (n+2) - 0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)n(n+1)
=>3A=n.(n+1).(n+2)
=> A=n.(n+1).(n+2)\3
Đặt A=1.2 + 2.3 + 3.4+...+n.( n+1)
=>3A=1.2.3+2.3.3+3.4.3+...+n.(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n.(n+1)(n+2)-(n-1).n.(n+2)
=n.(n+1)(n+2)-0
=n.(n+1)(n+2)
=>A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)