Chứng minh rằng: Nếu \(\frac{a}{b}>1\) thì \(\frac{a}{b}>\frac{a+c}{b+c}\)
1/ Chứng minh rằng nếu \(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)thì \(\frac{a}{2}=\frac{b}{3}\)
2/ Chứng minh rằng: Nếu \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}thì\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
1,
\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)
<=> (a - 2)(b + 3) = (a + 2)(b - 3)
<=> ab + 3a - 2b - 6 = ab - 3a + 2b - 6
<=> 3a - 2b = -3a + 2b
<=> 6a = 4b
<=> 3a = 2b
<=> \(\frac{a}{2}=\frac{b}{3}\)(Đpcm)
2,
Có:
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(=\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)
\(=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0\)
=> bz - cy = 0
=> bz = cy
=> \(\frac{b}{y}=\frac{c}{z}\)(1)
=> cx - az = 0
=> cx = az
=> \(\frac{c}{z}=\frac{a}{x}\)(2)
Từ (1) và (2)
=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)(Đpcm)
chứng minh rằng nếu a+b+c=0 thì \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=0\)
CHỨNG MINH RẰNG NẾU:\(\frac{a}{b}=\frac{b}{c}thì\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
Ta có a/b =b/c
=> a^2/b^2=a/b.a/b= a/b.b/c=a/c(1)
Lại có a/b=b/c
=> a^2/b^2=b^2/c^2=a^2+b^2 / b^2+c^2 (t/c dãy tỉ số = nhau) (2)
Từ (1),(2) => a/c=a^2+b^2 / b^2+c^2
Ta có \(\frac{a}{b}=\frac{b}{c}\)=> \(\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2\)
=> \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)mà \(\frac{a}{b}=\frac{b}{c}\)
=> \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)
Ta có : \(\frac{a}{b}=\frac{b}{c}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}\)
Áp dung tính chất của dãy tỉ bằng nhau , ta có :
\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{c}=\frac{a}{c}\)( điều phải chứng minh )
Vậy ...............
Chứng minh rằng :Nếu a+b+c=0 thì
\(Q=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c+a}\right)=9\)
Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)=\left(x,y,z\right)\)
Khi đó :
\(Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)
Ta có :
\(x+y=\frac{a-b}{c}+\frac{b-c}{a}=\frac{a^2-ab+bc-c^2}{ac}=\frac{b\left(c-a\right)-\left(c-a\right)\left(c+a\right)}{ca}\)
\(=\frac{b\left(c-a\right)-\left(c-a\right)\left(-b\right)}{ac}=\frac{2b\left(c-a\right)}{ca}\) ( do \(a+b+c=0\))
\(\Rightarrow\frac{x+y}{z}=\frac{2b\left(c-a\right)}{ca}.\frac{b}{c-a}=\frac{2b^2}{ca}=\frac{2b^3}{abc}\)
Hoàn toàn tương tự
\(\frac{y+z}{x}=\frac{2c^3}{abc};\frac{x+z}{y}=\frac{2a^3}{abc}\)
Do đó :
\(Q=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{x+z}{y}=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=3\)
\(=3+\frac{2\left[\left(-c\right)^3-3ab\left(-c\right)^3+c^3\right]}{abc}=3+\frac{2.3abc}{abc}=3+6=9\)
Ta có đpcm
Chứng minh rằng : Nếu abc=1 thì \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\)
do abc=1 nên \(\frac{a}{ab+a+1}\)=\(\frac{a}{ab+a+abc}\)=\(\frac{a}{a\left(bc+b+1\right)}\)=\(\frac{1}{bc+b+1}\)
\(\frac{c}{ac+c+1}\)=\(\frac{bc}{abc+bc+b}\)(nhân cả 2 vế cho b)=\(\frac{bc}{bc+b+1}\)
=>\(\frac{a}{ab+a+1}\)+\(\frac{b}{bc+b+1}\)+\(\frac{c}{ac+c+1}\)=\(\frac{bc+b+1}{bc+b+1}\)=1
chứng minh rằng nếu a+b+c=0 thì :
\(A=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)
Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\) khác 1 (a,b,c,d khác 0) thì \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Theo tính chất dãy tỉ số bằng nhau có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
ta có a+b/a-b=c+d/c-d
suy ra (a+b)(c-d)=(a-b)(c+d)
ac-ad+bc-bd=ac+ad-bc-bd
ac-ac+bc+bc-bd+bd=ad+ad
2bc=2ad
nen bc=ad=a/b=c/d
vay tu a/b=c/d ta co the suy ra a+b/a-b=c+d/c-d
Chứng minh rằng nếu \(x=\frac{a-b}{a+b};y=\frac{b-c}{b+c};z=\frac{c-a}{c+a}\)
Thì ( 1+x)(1+y)(1+z) = (1-x)(1-y)(1-z)
Có: 1+x = \(\frac{a+b+a-b}{a+b}\) = \(\frac{2a}{a+b}\)
Tương tự, 1 + y = \(\frac{2b}{b+c}\)
1 + z = \(\frac{2c}{c+a}\)
1 - x = \(\frac{q+b-a+b}{a+b}\) = \(\frac{2a}{a+b}\)
Tương tự như thế rồi nhân (1+x), (1+y), (1+z) với nhau; (1-z), (1-y), (1-z) với nhau
Chứng minh rằng nếu a + b + c = 0 thì \(A=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{c}\right).\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{c}{c-a}\right)=9\)
*Đặt P = (a-b)/c + (b-c)/a + (c-a)/b, ta có:
P = (a-b)/c + (b-c)/a + (c-a)/b
=> abc.P = ab(a-b) + bc(b-c) + ca(c-a)
= ab(a-b) + bc(b-a + a-c) + ca(c-a)
= ab(a-b) - bc(a-b) - bc(c-a) + ca(c-a)
= b(a-b)(a-c) + c(c-a)(a-b)
= (a-b)(a-c)(b-c)
=> P = (a-b)(a-c)(b-c)/abc
*Đặt Q = c/(a-b) + a/(b-c) + b/(c-a), ta có:
Vì a+b+c = 0 => a+b = -c ; b+c = -a ; c+a = -b
Q = c/(a-b) + a/(b-c) + b/(c-a)
=> (a-b)(b-c)(c-a).Q = c(b-c)(c-a) + a(a-b)(c-a) + b(a-b)(b-c)
= c(b-c)(c-a) + (-b-c)(a-b)(c-a) + b(a-b)(b-c)
= c(b-c)(c-a) – c(a-b)(c-a) – b(a-b)(c-a) + b(a-b)(b-c)
= c(c-a)(2b-a-c) + b(a-b)(a+b-2c)
= 3bc(c-a) – 3bc(a-b)
= 3bc(b+c-2a)
= 3bc(-a-2a)
= -9abc
=> Q = -9abc/(a-b)(b-c)(c-a) = 9abc /(a-b)(b-c)(a-c)
Vậy P.Q = 9 (đpcm)
Chứng minh rằng nếu \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)và a+b+c=2 thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)