Chung Minh Rang
tich cua 2 so tu nhien lien tiep chia het cho 2
chung minh rang tong cua 3 so tu nhien lien tiep chia het cho 3,tong cua 5 so tu nhien lien tiep khong chia het cho 5
tổng 5 chữ sô chữ nhiên liên tiếp vẫn chia hết cho 5 sao mà chứng minh được \(VD:1+2+3+4+5=15⋮5\)
Gọi 3 số tự nhiên liên tiếp là a , b , c
a = x . 3
b = x . 3 + 1
c = x . 3 + 2
Tổng của chúng là x . 3 + x . 3 + 1 + x . 3 + 2 = x . 3 . 3 + 1 + 2 = x . 3 . 3 + 3 = x . 9 + 3
Các số hạng của tổng đều chia hết cho 3
=> x . 9 + 3 chia hết cho 3 <=> tổng của 3 số tự nhiên liên tiếp chia hết cho 3
b ) Tương tự câu đầu
chung minh rang tong 3 so tu nhien lien tiep thi chia het cho 3 con tong cua 4 so tu nhien lien tiep thi ko chia het cho 4
Gọi 3 số liên tiếp lần lượt là: a;a+1;a+2
Ta có a+(a+1)+(a+2)=(a+a+a)+(1+2)=3a+3 chia hết cho 3(điều phải chứng minh)
Gọi 4 số tự nhiên liên tiếp lần lượt là: a;a+1;a+2;a+3
Ta có: a+(a+1)+(a+2)+(a+3)=(a+a+a+a)+(1+2+3)=4a+6 không chia hết cho 4(diều phải chứng minh)
bai 1:a chung minh 2 so tu nhien lien tiep chia het cho 8
b chung minh 3 so tu nhien lien tiep chia het cho 48
c chung minh 4 so tu nhien lien tiep chia het cho 348
LAM NHANH MA DE HIEU GIUM MINH NHA MINH DANG RAT CAN THANHKS NHIEU
Chung minh rang: tong cua 3so tu nhien lien tiep chia het cho3, tong5 so tu nhien lien tiep chia het cho5
+)CMR: tổng của 3 số tự nhiên liên tiếp chia hết cho 3
Gọi 3 số tự nhiên liên tiếp có dạng a; a+1; a+2 với a thuộc N
=> [a+(a+1)+(a+2)]
=(a+a+1+a+2)
=(a+a+a)+(1+2)
=3a+3
Ta có 3:3->3a:3
3:3
Vậy tổng của ba số tự nhiên liên tiếp chia hết cho 3
+) CMR: Tổng của 5 số tự nhiên liên tiếp Gọi 3 số tự nhiên liên tiếp có dạng a; a+1; a+2;a+3;a+4 với a thuộc N
=> [a+(a+1)+(a+2)+(a+3)+(a+4)]
=(a+a+1+a+2+a+3+a+4)
=(a+a+a+a+a)+ (1+2+3+4)
= 5a+10
Ta có 5:5->5a:5
10:a
Vậy tổng của năm số tự nhiên liên tiếp chia hết cho 5
Gọi: 2 số tự nhiên liên tiếp tạm được gọi là: a;a+1;a+2
Ta có: a+a+1+a+2
=3a+(1+2)
=3a+3
=> 3a chia hết cho 3 ( chia 3a chia 3 bằng a) , 3 cũng chia hết cho 3(3 chia 3 bằng 1)
=> Đúng
5 số tự nhiên liên tiếp ta gọi là b;b+1;b+2;b+3;b+4
Ta có: b+b+1+b+2+b+3+b+4
=(b+b+b+b+b)+(1+2+3+4)
=5b+10
Mà 5b chia hết cho 5 (5b chia 5 bằng b); 10 cũng chia hết cho 5 ( 10 chia 5 bằng 2)
=> Đúng
a,chung to rang tich cua 2 chan lien tiep chia het cho 8.b,chung to rang tich cua ba so tu nhien lien tiep chia het cho 6
Chung minh rang
Tong cua 3 so chan lien tiep chia het cho 6
Tong cua ba so le lien tiep khong chi het cho 6
Tong cua 5 so tu nhien lien tiep chia het cho 5
Tong cua nam so chan lien tiep thi chia het cho 10
Tong cua nam so le lien tiep thi chua 10 du 5
you can call it a a+1 a+2
sorry wait for me thanks
Goi ba so chan lien tiep la \(a;a+2;a+4\)
\(\Rightarrow a+a+2+a+4=3a+6\)
Vì a là số chẵn nên a chia hết cho 2 \(\Rightarrow3a⋮6\)
\(\Rightarrow3a+6⋮6\)
Vậy tổng ba số chẵn liên tiêp chia hết cho 6
tong ba so tu nhien lien tiep co chia het cho 3 khong? chung to trong 3 so tu nhien lien tiep co 1 so chia het cho 4
tong bon so tu nhien lien tiep co chia het cho4 khong? chung to trong 4 so tu nhien lien tiep co 1 so chia het cho4
a) Chung to rang tong 3 so tu nhien lien tiep co 1 so chia het cho 3.
b) Chung to rang tong cua 3 so tu nhien lien tiep la 1 so chia het cho 3.
b)goi 3 số tự nhiên la a, a+1, a+2
tổng 3 số la 3a+3 chia hết cho 3
a)Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
chung minh rang tong cua 3 so tu nhien lien tiep chia het cho 3
Ta thấy một ví dụ:
Coi ba số tự nhiên liên tiếp lần lượt là: 1 ; 2 ; 3
Ta có: Tổng là:
1 + 2 + 3 = 6
6 chia hết cho 3 . Vì thế tổng ba số tự nhiên liên tiếp chia hết cho 3
Thử tương tự với số: 2 ; 3 ; 4 và các số khác
Bạn cũng có thể coi ba số đó là a ; b ; c
Ta có: a + b + c = (3 chữ số abc cộng lại và chính là 3)
3 chia hết cho 3 nên ba số tự nhiên liên tiếp chia hết cho 3
- Gọi 3 số tự nhiên nhiên liên tiếp là: n, n+1 và n+2
Tổng của 3 số tự nhiên liên tiếp n,n+1,n+2 là:
n+n+1+n+2
= (n+n+n) + (1+2)
= 3n + 3
= 3.(n+1) \(⋮\)3
Ta thấy 3.(n+1) chia hết cho 3
nên tổng 3 số tự nhiên liên tiếp chia hết cho 3