Chứng minh :
Nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c
Chứng minh rằng nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c
chứng minh nếu a,b chia hết cho m và a+b+c chia hết cho m thì c chia hết cho m
= B cận thận sai nhé
ai chơi freefire thì kb với mình
Theo bài, ta có: \(\hept{\begin{cases}a,b⋮m\left(1\right)\\a+b+c⋮m\left(2\right)\end{cases}}\)
Từ (1) \(\Rightarrow a+b⋮m\)(3)
Trừ (2) cho (3) ta được: \(\left(a+b+c\right)-\left(a+b\right)⋮m\)
\(\Rightarrow a+b+c-a-b⋮m\)\(\Rightarrow c⋮m\)( đpcm )
bài 1 : a, Chứng minh rằng nếu a chia hết cho c và b chia hết cho c thì a nhân m +_ b nhân n chia hết cho c b, Chứng minh rằng nếu a chia hết cho m ; bchia hết cho m và a+b+c chia hết cho m thì c chia hết cho m .
a)+)Theo bài ta có:a\(⋮\)c;b\(⋮\)c
\(\Rightarrow am⋮c;bn⋮c\)
\(\Rightarrow am\pm bn⋮c\)(ĐPCM)
Vậy nếu a\(⋮\)c;b\(⋮\)c \(\Rightarrow am\pm bn⋮c\)
b)+)Theo bài ta có:a\(⋮\)m;b\(⋮\)m;a+b+c\(⋮\)m
\(\Rightarrow\left(a+b\right)+c⋮m\)
Mà a+b\(⋮\)m(vì a\(⋮\)m;b\(⋮\)m)
\(\Rightarrow c⋮m\)(ĐPCM)
Vậy c\(⋮m\) khi a\(⋮\)m;b\(⋮\)m và a+b+c\(⋮\)m
*Lưu ý ĐPCM=Điều phải chứng minh
Chúc bn học tốt
Người ta chứng minh được rằng:
a) Nếu a chia hết cho m và a chia hết cho n thì a chia hết cho BCNN của m và n
b) Nếu tích a.b chia hết cho c mà b và c là 2 số nguyên tố cùng nhau thì a chia hết cho c.
Chứng minh rằng :
a/ Biết a+b chia hết cho 7.Chứng minh rằng aba chia hết cho 7
b/ Biết a+b+c chia hết cho 7.Chứng minh rằng nếu abc chia hết cho 7 thì b-c chia hết cho 7
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
Chứng minh rằng nếu a chia hết cho m ,b chia hết cho m,a+b+c chia hết cho m thì c chia hết cho m
Theo bài ra ta có :
a = m.k ; b = m.n; a + b + c = m.d (k; n; d \(\in\) Z)
⇒ c = m.d - (a+b)
⇒a + b = m.k + m.n = m(k+n)
Thay a + b = m(k+n) vào biểu thức c = m.d - (a+b) ta có:
c = m.d - m(k+n)
c = m.( d-k-n) Vì d,k,n \(\in\) Z nên => c ⋮ m (đpcm)
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Đang định hỏi thì ....
a)cho a, b là các số nguyên, chứng minh rằng nếu a chia cho 13 dư 2 và b chia cho 13 dư 3 thì a^2 + b^2 chia hết cho 13
b) Cho a,b là các số nguyên . Chứng minh rằng nếu a chia cho 19 dư 3 , b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
c) chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3