cho biết :n thuộc và n^2 .n.n^5
Tìm N thuộc Z biết
N+1 thuộc Ư (N.N+2. N-3)
cho a = n.n .n [n thuộc N] biết a=273 tim n
a=n.n.n
mà a=273 nên ta có n.n.n=273
suy ra n mũ 3=273
suy ra n=7
cho phân số A=n-5/n.n+3 với n thuộc Z. Chứng tỏ phân số A luôn luôn tồn tại.
Tìm n thuộc N sao cho n.n+n là SCP
tìm n thuộc N sao cho
a) n+3/n+1 thuộc N
b)n.n+3n/n-1 thuộc N
Chứng minh rằng với mọi số tự nhiên n ta có:
a) (n+2).(n+7) chia hết cho 2
b) n.n+1.n+2 chia hết cho 2 và 3
c) n.n+1.(2n+1) chia hết cho 2 và 3
chứng tỏ rằng với m và n thuộc N thì
n.n(n+4).(n+8)
với n thuộc Z thì số sau chẵn hay lẻ?
a) A=(n - 4)(n - 5)
b) B= n.n -n -1
Trình bày lời giải cho mình nhé. Thanks
a, + Nếu n là số chẵn => n - 4 là số chẵn => (n - 4)(n - 5) là số chẵn
+ Nếu n là số lẻ => n - 5 là số chẵn => (n - 4)(n - 5) là số chẵn
Vậy (n - 4)(n - 5) là số chẵn với mọi n thuộc Z
b, B = n.n - n - 1
B = n(n - 1) - 1
Vì n và n - 1 khác tính chẵn lẻ nên n là số chẵn hoặc n - 1 là số chẵn
=> n(n - 1) là số chẵn
=> n(n - 1) là số lẻ
Vậy...
tìm n thuộc N
2n+1chia hết cho n-3
n.n+3chia hết cho n+1
Mình giải theo cách lớp 6 nhé :
a)Ta có: 2n+1 chia hết cho n-3 (1)
Mà n-3 chia hết cho n-3
=>2(n-3) chia hết cho n-3
=>2n-6 chia hết cho n-3 (2)
Từ (1) và (2) => (2n+1) - (2n-6) chia hết cho n-3
=>7 chia hết cho n-3
=> n-3 thuộc Ư(7)
=>n-3 thuộc {1; 7}
=>n thuộc {4; 10}
b)Ta có: n.n+3 chia hết cho n+1 (3)
Mà n+1 chia hết cho n+1
=>n(n+1) chia hết cho n+1
=>n.n +n chia hết cho n+1 (4)
Từ (3) và (4) =>(n.n+n) - (n.n + 3) chia hết cho n+1
=> n-3 chia hết cho n+1 (5)
Mà n+1 chia hết cho n+1 (6)
Từ (5) và (6) =>(n+1) - (n-3) chia hết cho n+1
=> 4 chia hết cho n+1
=>n+1 thuộc Ư(4)
=>n+1 {1;2;4}
=>n thuộc {0; 1; 3}
Nhọc lắm bạn à !