\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}v\text{à}2x^2+2y^2-3z^2=-100\)
Tìm x,y,z
Tìm x, y, z
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}v\text{à}2\text{x}+3y-z=186\)
b, 3x=2y ; 7y = 5z và x-y+z = 32
c,\(\frac{2\text{x}}{3}=\frac{3y}{4}=\frac{4\text{z}}{5}v\text{à}x+y+z=49\)
d, \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}v\text{à}x^2+y^2+z^2=14\)
e, x+y=x:y= 3.(x-y)
b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....
a)\(\frac{z}{5}=\frac{x}{2}=\frac{y}{3}v\text{à}x.y-z=810\)
b)\(5x=3yv\text{à}2x^2-y^2=-28\)
c)\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}v\text{à}x^2+y^2+z^2=14\)
d)\(x:y:z=3:4:5v\text{à}5z^2-2y^2=594\)
Tìm tổng của 3 số dương x,y,z biết:\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5};2x^2+2y^2-3z^2=-100\)
Lời giải:
Đặt $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k(k>0)$
$\Rightarrow x=3k; y=4k; z=5k$.
Khi đó:
$2x^2+2y^2-3z^2=-100$
$\Rightarrow 2(3k)^2+2(4k)^2-3(5k)^2=-100$
$\Rightarrow -25k^2=-100$
$\Rightarrow k^2=4\Rightarrow k=2$ (do $k>0$)
Ta có:
$x=3k=3.2=6; y=4k=4.2=8; z=5k=5.2=10$
Tìm ba số x,y,z thõa mãn:\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và\(2x^2+2y^2-3z^2=-100\)
Tìm x,y,z thõa mãn: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và \(2x^2+2y^2-3z^2=-100\)
Ta có:x/3=y/4=z/5
=>đặt x=3k;y=4k;z=5k
2x^2+2y^2-3z^2=-100
<=>-25k^2=-100
<=>k^2=4
<=>\(\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
<=>\(\orbr{\begin{cases}\hept{\begin{cases}x=6\\y=8\\z=10\end{cases}}\\\hept{\begin{cases}x=-6\\y=-8\\z=-10\end{cases}}\end{cases}}\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}v\text{à x- 2y+3z=14}\)
Ta có \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(=\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
\(=\frac{x-1-\left(2y-4\right)+3z-9}{2-6+12}\)
\(=\frac{x-1-2y+4+3z-9}{8}\)
\(=\frac{\left(x-2y+3z\right)-6}{8}=\frac{14-6}{8}=\frac{8}{8}=1\)
Có \(\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow y=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)
tìm x,y,z
x:y:z=3:4:5 và 2x2+2y2-3z2 =-100
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}\) và x+y-z=50
\(x:y:z=3:4:5\Leftrightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=2.\left(3k\right)^2+2.\left(4k\right)^2-3.\left(5k\right)^2=18k^2+32k^2-75k^2=100\)
\(\Leftrightarrow-25k^2=-100\Leftrightarrow k^2=4\Leftrightarrow k=2\Rightarrow x=6;y=8;z=10\)
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}=\frac{x+1+y+2-z+1}{3+4-5}=\frac{54}{2}=27\Rightarrow laanfluot:\)
Chia làm 2 phần hả bạn.
Phần 1:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\Leftrightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có;
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
Suy ra \(x^2=36;y^2=64;z^2=100\Rightarrow x=\pm6;y=\pm8;z=\pm10\)
Vậy (x,y,z) = (6,8,10) : (-6,-8,-10)
Phần 2 :
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}=\frac{x+1+y+2-\left(z-1\right)}{3+4-5}=\frac{54}{2}=27\)
Suy ra \(\hept{\begin{cases}x=80\\y=106\\z=136\end{cases}}\)
TÌM X, Y , Z \(\frac{x}{8}=\frac{y}{64}=\frac{z}{216}v\text{à}2x^2+2y^2-z^2=1\)
bài này dễ mà, bạn áp dụng tính chất của dãy tỉ số bằng nhau là ra thôi nha!
ai k mình k lại nhưng phải lên điểm mình tích gấp đôi
tìm x,y,z biết :\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và \(2x^2+2y^2-3z^2=-100\)
nhấn lộn lớp 1 là lớp 7 mà quan trọng j cái lớp quan trọng có giải dc ko mới là chuyện để come