Tìm x biết (2x-1)6=(2x-1)8
Tìm x, biết (2x - 1) ^6 = (2x - 1)^8
TÌM x BIẾT:
(2x-1)^6=(2x-1)^8
\(\Rightarrow\left(2x-1\right)^8:\left(2x-1\right)^6=1\)
\(\Rightarrow\left(2x-1\right)^2=1\)
\(\Rightarrow2x^2-1=1\)
\(\Rightarrow2x^2=2\)
\(\Rightarrow x^2=1\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\left(-1\right)\end{cases}}\)
Tìm x biết:
\(\frac{6^{x+3}-6^{x+1}+6^x}{211}=\frac{7^{2x}+7^{2x+1}+7^{2x-3}}{8\frac{1}{49}}\)
Tìm x biết : (1-2x)/10+(3-2x)/8+(23-2x)/6 =0
\(\frac{1-2x}{10}+\frac{3-2x}{8}+\frac{23-2x}{6}=0\)
\(\Leftrightarrow\frac{1}{10}-\frac{2x}{10}+\frac{3}{8}-\frac{2x}{8}+\frac{23}{6}-\frac{2x}{6}=0\)
\(\Leftrightarrow\frac{1}{10}-\frac{x}{5}+\frac{3}{8}-\frac{x}{4}+\frac{23}{6}-\frac{x}{3}=0\)
\(\Leftrightarrow\left(\frac{1}{10}+\frac{3}{8}+\frac{23}{6}\right)-\left(\frac{x}{3}+\frac{x}{4}+\frac{x}{5}\right)=0\)
\(\Leftrightarrow\frac{517}{120}-\left(\frac{x}{3}+\frac{x}{4}+\frac{x}{5}\right)=0\)
\(\Leftrightarrow x\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)=\frac{517}{120}\)
\(\Leftrightarrow x.\frac{47}{60}=\frac{517}{120}\)
\(\Rightarrow x=\frac{517}{120}:\frac{47}{60}=\frac{11}{2}\)
Vậy \(x=\frac{11}{2}\)
(1-2x)/10+(3-2x)/8+(23-2x)/6=0
[48(1-2x)+60(3-2x)+80(23-2x)]/480=0
48-96x+180-120x+1840-160x=0
2068-376x=0
-376x=-2068
x=11/2
Tìm x biết (2x-1)6=(2x-1)8
(2x-1)6=(2x-1)8
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right)^6\left[1-\left(2x-1\right)^2\right]=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x=1\\2x-1=1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\2x=2\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=1\end{array}\right.\)
Tìm số nguyên x, biết: a) x - 6 = 1 b) 23 - x = 0 c) 2x - 8 = 12 d) 2x - ( -1) = 1
Tìm x biết : a) 2x+3/15 = 7/5. b) x-2/9 = 8/3. c) -8/x = -x/18 d) 2x+3/6 = x-2/5. e) x+1/22 = 6/x f) 2x-1/2 = 5/x g) 2x-1/21 = 3/2x+1 h) 10x+5/6 = 5/x+1
a) \(2x+\frac{3}{15}=\frac{7}{5}\)
=> \(2x=\frac{7}{5}-\frac{3}{15}=\frac{21}{15}-\frac{3}{15}=\frac{18}{15}\)
=> \(x=\frac{18}{15}:2=\frac{18}{15}\cdot\frac{1}{2}=\frac{9}{15}\cdot\frac{1}{1}=\frac{9}{15}\)
b) \(x-\frac{2}{9}=\frac{8}{3}\)
=> \(x=\frac{8}{3}+\frac{2}{9}\)
=> \(x=\frac{24}{9}+\frac{2}{9}=\frac{26}{9}\)
c) \(\frac{-8}{x}=\frac{-x}{18}\)
=> x(-x) = (-8).18
=> -x2 = -144
=> x2 = 144(bỏ dấu âm)
=> x = \(\pm\)12
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\)
=> 5(2x + 3) = 6(x - 2)
=> 10x + 15 = 6x - 12
=> 10x + 15 - 6x + 12 = 0
=> 4x + 27 = 0
=> 4x = -27
=> x = -27/4
e) \(\frac{x+1}{22}=\frac{6}{x}\)
=> x(x + 1) = 132
=> x(x + 1) = 11.12
=> x = 11
f) \(\frac{2x-1}{2}=\frac{5}{x}\)
=> x(2x - 1) = 10
=> 2x2 - x = 10
=> 2x2 - x - 10 = 0
tới đây tự làm đi nhé
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)
=> (2x - 1)(2x + 1) = 63
=> 4x2 - 1 = 63
=> 4x2 = 64
=> x2 = 16
=> x = \(\pm\)4
h) Tương tự
a) \(\frac{2x+3}{15}=\frac{7}{5}\Leftrightarrow10x+15=105\Leftrightarrow10x=90\Rightarrow x=9\)
b) \(\frac{x-2}{9}=\frac{8}{3}\Leftrightarrow3x-6=72\Leftrightarrow3x=78\Rightarrow x=26\)
c) \(\frac{-8}{x}=\frac{-x}{18}\Leftrightarrow x^2=144\Leftrightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\Leftrightarrow10x+15=12x-12\Leftrightarrow2x=27\Rightarrow x=\frac{27}{2}\)
e) \(\frac{x+1}{22}=\frac{6}{x}\Leftrightarrow x^2+x-132=0\Leftrightarrow\left(x-11\right)\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}x=11\\x=-12\end{cases}}\)
f) \(\frac{2x-1}{2}=\frac{5}{x}\Leftrightarrow2x^2-x-10=0\Leftrightarrow\left(x-2\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{5}{2}\end{cases}}\)
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\Leftrightarrow4x^2=64\Leftrightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\Leftrightarrow10x^2+15x-25=0\Leftrightarrow5\left(x-1\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
Tìm số tự nhiên x biết:
\(\frac{6^{x+3}-6^{x+1}+6^x}{211}=\frac{7^{2x}+7^{2x+1}+7^{2x-3}}{8\frac{1}{49}}\)
Tìm số hữu tỉ x, biết rằng:
(2x-1)^6 =(2x-1)^8
Các giá trị x thu được là \(0,1,\frac{1}{2}\)
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right)^6.[1-\left(2x-1\right)^2]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^2=1\end{cases}}\)
Còn bn tự giải nhé