Biết tồn tại số nguyên tố p thỏa mãn p+6;p+8;p+12;p+14 đều là số nguyên tố.
tìm các số nguyên dương a;b;c;d thỏa mãn a+2b+3c=3d!+1.biết tồn tại các số nguyên tố p;q thỏa mãn a=(p+1)(2p+1)=(q+1)(q-1)2
Chứng minh rằng không tồn tại các số nguyên dương m,n,p với p là số nguyên tố thỏa mãn m2019+n2019=p2019
C/M: không tồn tại các số dương m, n, p với p nguyên tố thỏa mãn \(m^{2019}+n^{2019}=p^{2018}\)
Tồn tai hay không tồn tại các số nguyên tố a,b,c thỏa mãn các điều kiện sau: \(a^b+2011=c\)
Tồn tại không số nguyên tố p và số nguyên dương n thỏa mãn 2n .p2+1 là lập phương của một số nguyên dương
tìm một số nguyên tố p và q sao cho tồn tại số nguyên dương n thỏa mãn điều kiện: 1/p-1/q=9/n
giúp mik với ạ , mik cần gấp
\(\dfrac{1}{p}-\dfrac{1}{q}=\dfrac{9}{n}\) =>\(\dfrac{q-p}{pq}=\dfrac{9}{n}\) =>\(n=\dfrac{9pq}{q-p}\).
- Đặt pq=n , p-q=9
- Vì n là số nguyên nên: 9pq ⋮ (q-p)
*Gỉa sử p,q lẻ thì 9pq ⋮ 2 =>p⋮2 hoặc q⋮2 (vô lý).
*Gỉa sử p chẵn, q lẻ thì p⋮2 mà p là số nguyên tố nên p=2.
- p-q=9 =>2-q=9 =>q=-7 (không thỏa mãn).
*Gỉa sử q chẵn, p lẻ thì q⋮2 mà q là số nguyên tố nên q=2.
- p-q=9 =>p=11 (thỏa mãn).
- Vậy p=11 ; q=2.
cmr không tồn tại các số nguyên dương m,n,p với p nguyên tố thỏa mãn m2019+n2019=p2018
có tồn tại hay ko các số nguyên tố p,q thỏa mãn p2(p3-1)=q(q+1)
cmr với mọi số nguyên tố p lớn hơn 2 đều không tồn tại số dương m,n thỏa mãn 1/p=1/m^2 +1/n^2