cmr không tồn tại các số nguyên dương m,n,p với p nguyên tố thỏa mãn m2019+n2019=p2018
Chứng minh rằng không tồn tại các số nguyên dương m,n,p với p là số nguyên tố thỏa mãn m2019+n2019=p2019
C/M rằng với mọi số nguyên tố lẻ p đều ko tồn tại các số nguyên dương m;n thỏa mãn \(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\)
Cho A là một số nguyên dương gồm 4039 chữ số, trong đó có 2019 chữ số 1 và 2020 chữ số 0. CMR không tồn tại hai số nguyên dương a,n lớn hơn 1 thỏa mãn A=\(a^n\)
tồn tại hay ko số nguyên x;y thỏa mãn : \(2016x^{2017}+2017y^{2018}=2019\)
a) CHO 3 SỐ DƯƠNG a , b , c THỎA MÃN abc=1 . CMR: (a+b)(b+c)(c+a)>= 2(1+a+b+c)
b) CHO m,n LÀ 2 SỐ NGUYÊN DƯƠNG THỎA MÃN: m^2+n^2+2018 CHIA HẾT CHO mn. CMR m,n LÀ 2 SỐ LẺ VÀ NGUYÊN TỐ CÙNG NHAU
Tồn tại hay không các số nguyên tố a,b,c thỏa mãn điều kiện \(a^b+2011=c\). Giúp mình với nha. Đây là câu 1 của đề thi HSG Toán 9 Huyện Yên Thành năm 2019-2020. Bạn nào có nguyên đáp án càng tốt , Thnks nhìu
Cho A là một số nguyên dương thỏa gồm 4039 chữ số, trong đó có 2019 chữ số 1 và 2020 chữ số 0. Chứng minh rằng không tồn tại hai số nguyên dương a và n sao cho A=an
Cho M=(2018^2018+2019^2018)^2019 và N=(2018^2019+2019^2019)^2018. So sánh M và N