Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Xuân Hưng
Xem chi tiết
Nguyễn Mạnh Trung
12 tháng 1 2016 lúc 22:12

Giả sử 3n+4 là SCP => 3n+4=a2

Mà 3 nâng lên lũy thừa bao nhiêu cũng có tận cùng là 1 số lẻ, mà số lẻ+số chẵn=số lẻ nên a2 là số lẻ

=> a là số lẻ

=> a có dạng 4k+1 hoặc 4k+3

+) Nếu a=4k+1 thì a2=(4k+1)2=(4k+1)(4k+1)=16k2+8k+1=8m+1

+) Nếu a=4k+3 thì a2=(4k+3)2=(4k+3)(4k+3)=16k2+24k+9=8m+1

Vậy a2=8m+1          (1)

Mặt khác, nếu n chẵn thì 3n+4=32k+4=9k+4=(8+1)k.3+4=8h+1+4=8h+5    (trái với 1)

nếu n lẻ thì n=2k+1=>3n+4=32k+1+4=9k.3+4=(8+1)k.3+4=(8k+1).3+4=8h+1      (trái với 1)

  Vậy 3n+4 không thể là SCP

tick nha!

Lê Trọng Quý
Xem chi tiết
Phạm Thu Hương
Xem chi tiết
Nguyễn Xuân Hưng
Xem chi tiết
CAO THỊ VÂN ANH
Xem chi tiết
Nguyễn Thị Thúy Hường
12 tháng 1 2016 lúc 20:45

làm ko bt đúng hay sai:

giả sử 3^n+4 là scp=>3^n+4=a^2

mà 3 nâng lên lũy thừa bao nhiêu cũng có tận cùng là 1 số lẻ, mà số lẻ +số chẵn=SL nên a^2 là số lẻ, =>a là số lẻ

=>a có dạng 4k+1 hoặc a có dạng 4k+3

+) nếu a =4k+1 thì a^2=(4k+1)^2=(4k+1)(4k+1)=16k^2+8k+1=8m+1

+) nếu a=4k+3 thì a^2=(4k+3)^2=(4k+3)(4k+3)=16k^2+24k+9=8m+1

vậy a^2=8m+1(1)

mặt khác, nếu n chẵn thì 3^n+4=3^(2k)+4=9^k+4=(8+1)^k+4=8h+1+4=8h+5)(trái với 1)

nếu n lẻ thì n=2k+1=>3^n+4=3^(2k+1)+4=9^k.3+4=(8+1)^k.3+4=(8k+1).3+4=8h+1(trái với 1)

vậy 3^n+4 ko thể là scp

Nguyễn Ngọc Quý
12 tháng 1 2016 lúc 20:30

3n + 4 và số nào không thể cùng là các số CP 

Nguyễn Mạnh Trung
Xem chi tiết
Vũ Đình Quân
6 tháng 1 2016 lúc 18:12

vì 3 mũ bao nhiêu cũng là số lẻ mà số lẻ nào + với số chẵn cũng = số lẻ nên ko bao giờ bình phương của 1 số = số lẻ

zZz Công serenity zZz
Xem chi tiết
Đạt Skull
Xem chi tiết
Akai Haruma
30 tháng 6 lúc 20:28

Lời giải:

Xét $n$ lẻ. Đặt $n=2k+1$ với $k$ tự nhiên.

Khi đó:

$3^n+4=3^{2k+1}+4\equiv (-1)^{2k+1}+4\equiv -1+4\equiv 3\pmod 4$

Xét $n$ chẵn. Đặt $n=2k$ với $k$ tự nhiên.

$3^n+4=3^{2k}+4=9^k+4\equiv 1^k+4\equiv 5\pmod 8$

Vậy $3^n+4$ chia $4$ dư $3$ hoặc chia $8$ dư $5$ với mọi $n$ tự nhiên.

$\Rightarrow 3^n+4$ không thể là số chính phương (do 1 scp chia 8 chỉ có thể có dư 0,1,4 và chia 4 chỉ có dư 0,1).

Nguyễn Mạnh Trung
Xem chi tiết
kaitovskudo
12 tháng 1 2016 lúc 22:05

Với n \(\ge\) 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33

Còn 5!; 6!; …; n! đều tận cùng bởi 0

Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3

Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)

Huỳnh Thị Thùy Vy
13 tháng 1 2016 lúc 17:13

Với n $\ge$≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33

Còn 5!; 6!; …; n! đều tận cùng bởi 0

Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3

Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)